参考文献
[1] HOSSAIN M D T, GIRASE A G, ORMOND R B. Evaluating the performance of surfactant and charcoal-based cleaning products to effectively remove PAHs from firefighter gear[J]. Frontiers in Materials, 2023, 10: 1142777. https://doi.org/10.3389/fmats.2023.1142777. [2] HUSSAR E, RICHARDS S, LIN Z-Q, et al. Human Health Risk Assessment of 16 Priority Polycyclic Aromatic Hydrocarbons in Soils of Chattanooga, Tennessee, USA[J]. Water Air and Soil Pollution, 2012, 223(9): 5535-5548. https://doi.org/10.1007/s11270-012-1265-7. [3] MA L L, MA C, SHI Z M, et al. Effects of fluoranthene on the growth, bioavailability and anti-oxidant system of Eisenia fetida during the ageing process[J]. European Journal of Soil Biology, 2012, 50: 21-27. https://doi.org/10.1016/j.ejsobi.2011.11.005. [4] ÖNDER K, MURAT B, ERCAN S, et al. The combined effects of polyethylene microplastics and benzoanthracene on Manila clam Ruditapes philippinarum[J]. Chemosphere, 2023, 329: 138664. https://doi.org/10.1016/j.chemosphere.2023.138664. [5] ZHANG J, LIN X, LIU W, et al. Effect of organic wastes on the plant-microbe remediation for removal of aged PAHs in soils[J]. Journal of Environmental Sciences, 2012, 24(8): 1476-1482. https://doi.org/10.1016/S1001-0742(11)60951-0. [6] ASYIKIN I N, NORHAFEZAH K, NURHIDAYAH H. Microbial Bioremediation Techniques for Polycyclic Aromatic Hydrocarbon(PAHs)-a Review[J]. Water, Air, & Soil Pollution, 2022, 233(4): 124. https://doi.org/10.1007/s11270-022-05598-6. [7] BORJI H, AYOUB G M, AL-HINDI M, et al. Nanotechnology to remove polychlorinated biphenyls and polycyclic aromatic hydrocarbons from water: a review[J]. Environmental Chemistry Letters, 2020, 18(3): 729-746. https://doi.org/10.1007/s10311-020-00979-x. [8] RAYAROTH M P, MARCHEL M, BOCZKAJ G. Advanced oxidation processes for the removal of mono and polycyclic aromatic hydrocarbons-A review[J]. Science of the Total Environment, 2023, 857: 159043. https://doi.org/10.1016/j.scitotenv.2022.159043. [9] SANCHES S, LEITAO C, PENETRA A, et al. Direct photolysis of polycyclic aromatic hydrocarbons in drinking water sources[J]. Journal of Hazardous Materials, 2011, 192(3): 1458-1465. https://doi.org/10.1016/j.jhazmat.2011.06.065. [10] XU Q, YUAN H, WANG H, et al. A Review on Modification Methods of Adsorbents for Naphthalene in Environment[J]. Catalysts, 2022, 12(4): 398. https://doi.org/10.3390/catal12040398. [11] LERMAN L S. Structural considerations in the interaction of DNA and acridines[J]. Journal of molecular biology, 1961, 3: 18-30. https://doi.org/10.1016/S0022-2836(61)80004-1. [12] HUANG G X, MA J, LI J S, et al. Study on the interaction between aflatoxin M1 and DNA and its application in the removal of aflatoxin M1[J]. Journal of Molecular Liquids, 2022, 355: 118938. https://doi.org/10.1016/j.molliq.2022.118938. [13] LI J S, WANG X X, FENG Z, et al. Optimization of aflatoxin B1 removal efficiency of DNA by resonance light scattering spectroscopy[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2023, 292: 122398. https://doi.org/10.1016/j.saa.2023.122398. [14] LI J, FENG Z, WANG J, et al. Interaction of aflatoxin G1 with free DN in vitro and possibility of its application in removing aflatoxin G1[J]. Journal of Environmental Science and Health Part B-Pesticides Food Contaminants and Agricultural Wastes, 2021, 56(10): 932-940. https://doi.org/10.1080/03601234.2021.1979838. [15] LI J S, WANG J, FAN J F, et al. Binding characteristics of aflatoxin B1 with free DNA in vitro[J]. Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy, 2020, 230: 118054. https://doi.org/10.1016/j.saa.2020.118054. [16] MA J, HUANG G X, MO C, et al. Insights into the intercalative binding of benzo b fluoranthene with herring sperm DNA in vitro and its application[J]. Journal of Molecular Liquids, 2023, 378: 121628. https://doi.org/10.1016/j.molliq.2023.121628. [17] XIONG Y N, LI J S, HUANG G X, et al. Interacting mechanism of benzo(a)pyrene with free DNA in vitro [J]. International Journal of Biological Macromolecules, 2021, 167: 854-861. https://doi.org/10.1016/j.ijbiomac.2020.11.042. [18] ZHANG J, LI J S, HUANG G X, et al. DNA Extracted from Byproducts of Common Carp Testis and Application in Removing Ethidium Bromide from Pollutants[J]. Journal of Aquatic Food Product Technology, 2022, 31(6): 536-548. https://doi.org/10.1080/10498850.2022.2080516. [19] HUANG G X, MA J, LI J S, et al. Removal of 1, 2- benzanthracene via the intercalation of 1, 2-benzanthracene with DNA and magnetic bead-based separation[J]. Nucleosides Nucleotides & Nucleic Acids, 2021, 40(2): 137-156. https://doi.org/10.1080/15257770.2020.1839905. [20] JIANG Z K, LI J S, HUANG G X, et al. Efficient removal of ethidium bromide from aqueous solutions using chromatin-loaded chitosan polyvinyl alcohol composites[J]. Environmental science and pollution research international, 2024, 31(2): 3276-3295. https://doi.org/10.1007/s11356-023-31364-0. [21] ZHANG J, LI J S, HUANG G X, et al. Chromatin extracted from common carp testis as an economical and easily available adsorbent for ethidium bromide decontamination[J]. Heliyon, 2022, 8(6): e09565. https://doi.org/10.1016/J.HELIYON.2022.E09565. [22] JIANG Z K, LI J S, HUANG G X, et al. Common carp sperm chromatin as an economical and effective remover for benzo(a)pyrene from pollutants[J]. Heliyon, 2024, 10(12): e33137. https://doi.org/10.1016/J.HELIYON.2024.E33137. [23] LUNDBERG P, BRUIN A, KLIJNSTRA J W, et al. Poly( ethylene glycol)-Based Thiol-ene Hydrogel Coatings- Curing Chemistry, Aqueous Stability, and Potential Marine Antifouling Applications[J]. Acs Applied Materials & Interfaces, 2010, 2(3): 903-912. https://doi.org/10.1021/am900875g. [24] KAROYO A H, WILSON L D. A Review on the Design and Hydration Properties of Natural Polymer- Based Hydrogels[J]. Materials, 2021, 14(5): 1095. https://doi.org/10.3390/ma14051095. [25] TOLSTOGUZOV V. Some thermodynamic considerations in food formulation[J]. Food Hydrocolloids, 2003, 17(1): 1-23. https://doi.org/10.1016/S0268-005X(01)00111-4. [26] CAMPO V L, KAWANO D F, DA SILVA D B, JR. , et al. Carrageenans: Biological properties, chemical modifications and structural analysis-A review[J]. Carbohydrate Polymers, 2009, 77(2): 167-180. https://doi.org/10.1016/j.carbpol.2009.01.020. [27] ARTMAN M, ROTH J S. Chromosomal RNA: an artifact of preparation?[J]. Journal of molecular biology, 1971, 60(2): 291-301. https://doi.org/10.1016/0022-2836(71)90295-6. [28] LE PECQ J B, PAOLETTI C. A new fluorometric method for RNA and DNA determination[J]. Analytical biochemistry, 1966, 17(1): 100-107. https://doi.org/10.1016/0003-2697(66)90012-1. [29] CHENG Z, KURU E, SACHDEVA A, et al. Fluorescent amino acids as versatile building blocks for chemical biology[J]. Nature Reviews Chemistry, 2020, 4(6): 275-290. https://doi.org/10.1038/s41570-020-0186-z. [30] HUANG G X, LI J S, YAN L J, et al. Adsorption of 1, 2-Benzanthracene from Aqueous Solution by DNA-Conjugated Magnetic Nanoparticles[J]. Water Air & Soil Pollution, 2022, 233(1): 9. https://doi.org/10.1007/s11270-021-05476-7. [31] JANGIR D K, CHARAK S, MEHROTRA R, et al. FT- IR and circular dichroism spectroscopic study of interaction of 5-fluorouracil with DNA[J]. Journal of Photochemistry and Photobiology B-Biology, 2011, 105(2): 143-148. https://doi.org/10.1016/j.jphotobiol.2011.08.003. [32] JANGIR D K, TYAGI G, MEHROTRA R, et al. Carboplatin interaction with calf-thymus DNA: A FTIR spectroscopic approach[J]. Journal of Molecular Structure, 2010, 969(1-3): 126-129. https://doi.org/10.1016/j.molstruc.2010.01.052. [33] SAITO S T, SILVA G, PUNGARTNIK C, et al. Study of DNA-emodin interaction by FTIR and UV-vis spectroscopy[J]. Journal of Photochemistry and Photobiology B-Biology, 2012, 111: 59-63. https://doi.org/10.1016/j.jphotobiol.2012.03.012. [34] DENG Y E, ZHOU Q, SUN S Q. Analysis and discrimination of infant powdered milk via FTIR spectroscopy[J]. Guang pu xue yu guang pu fen xi = Guang pu, 2006, 26(4): 636-639. https://doi.org/10.1016/j.sab.2006.01.014. [35] VIEIRA W T, DA SILVA M G C, NASCIMENTO L D O, et al. k-Carrageenan/sericin-based multiparticulate systems: A novel gastro-resistant polymer matrix for indomethacin delivery[J]. International Journal of Biological Macromolecules, 2023, 232: 123381. https://doi.org/10.1016/j.ijbiomac.2023.123381. [36] EL MIRI N, ABDELOUAHDI K, ZAHOUILY M, et al. Bio-nanocomposite films based on cellulose nanocrystals filled polyvinyl alcohol/chitosan polymer blend[J]. Journal of Applied Polymer Science, 2015, 132(22): 39950. https://doi.org/10.1002/app.42004. [37] OLADIPO A, KPOMAH B, EJEROMEDOGHENE O, et al. Facile fabrication and antibacterial properties of chitosan/acrylamide/gold nanocomposite hydrogel incorporated with Chaetomium globosium extracts from Gingko biloba leaves[J]. International Journal of Biological Macromolecules, 2024, 255: 128194. https://doi.org/10.1016/j.ijbiomac.2023.128194. [38] 龙小菊, 王欣怡, 肖琼, 等. ι-卡拉胶低浓度碱均相提取工艺优化及其性质分析[J]. 食品工业科技, 2015: 1-15. https://doi.org/10.13386/j.issn1002-0306.2024070413. [39] POURETEDAL H R, SADEGH N. Effective removal of Amoxicillin, Cephalexin, Tetracycline and Penicillin G from aqueous solutions using activated carbon nanoparticles prepared from vine wood[J]. Journal of Water Process Engineering, 2014, 1: 64-73. https://doi.org/10.1016/j.jwpe.2014.03.006. [40] GARCIA B, LEAL J M, PAIOTTA V, et al. Intercalation of ethidium into triple-strand poly(rA). 2poly(rU): a thermodynamic and kinetic study[J]. The journal of physical chemistry B, 2006, 110(32): 16131-16138. https://doi.org/10.1021/jp0613283. [41] AHMADPOUR A, EFTEKHARI N, AYATI A. Performance of MWCNTs and a low-cost adsorbent for Chromium(VI)ion removal[J]. Journal of Nanostructure in Chemistry, 2014, 4(4): 171-178. https://doi.org/10.1007/s40097-014-0119-9. [42] FARRAG M, ABRI S, LEIPZIG N D. pH-dependent RNA isolation from cells encapsulated in chitosanbased biomaterials[J]. International Journal of Biological Macromolecules, 2020, 146: 422-430. https://doi.org/10.1016/j.ijbiomac.2019.12.263. [43] VENKATESHA T G, VISWANATHA R, NAYAKA Y A, et al. Kinetics and thermodynamics of reactive and vat dyes adsorption on MgO nanoparticles[J]. Chemical Engineering Journal, 2012, 198-199: 1-10. https://doi.org/10.1016/j.cej.2012.05.071. [44] CHIOU M-S, CHUANG G-S. Competitive adsorption of dye metanil yellow and RB15 in acid solutions on chemically cross-linked chitosan beads[J]. Chemosphere, 2006, 62(5): 731-740. https://doi.org/10.1016/j.chemosphere.2005.04.068. [45] HEIBATI B, YETILMEZSOY K, ZAZOULI M A, et al. Adsorption of ethidium bromide(EtBr)from aqueous solutions by natural pumice and aluminium-coated pumice[J]. Journal of Molecular Liquids, 2016, 213: 41-47. https://doi.org/10.1016/j.molliq.2015.08.063. [46] CHARIZANI A, NOLI F. Investigation of biosorption process of barium radionuclides on pomegranate peel; isotherms, kinetics and mechanism[J]. Journal of Radioanalytical and Nuclear Chemistry, 2022, 331(2): 807-815. https://doi.org/10.1007/s10967-021-08152-6. [47] TRAN H N, YOU S-J, CHAO H-P. Thermodynamic parameters of cadmium adsorption onto orange peel calculated from various methods: A comparison study[J]. Journal of Environmental Chemical Engineering, 2016, 4(3): 2671-2682 https://doi.org/10.1016/j.jece.2016.05.009. [48] MEREY S, SINAYUC C. Gas-in-place calculations in shale gas reservoirs using experimental adsorption data with adsorption models[J]. The Canadian Journal of Chemical Engineering, 2016, 94(9): 1683-1692. https://doi.org/10.1002/cjce.22538. [49] MURUGESAN A, DIVAKARAN M, RAVEENDRAN P, et al. An Eco-friendly Porous Poly(imide-ether)s for the Efficient Removal of Methylene Blue: Adsorption Kinetics, Isotherm, Thermodynamics and Reuse Performances[J]. Journal of Polymers and the Environment, 2019, 27(5): 1007-1024. https://doi.org/10.1007/s10924-019-01408-z