摘要 | 苯并蒽 (BaA) 是多环芳烃 (PAHs) 中最重要的污染物之一, 具有分布广泛、稳定性强、生物累积性强、致癌性强等特点, 严重危害人类健康和环境。本项研究中, 基于BaA 和DNA之间的插层结合, 我们制备了一种新型的染色质/卡拉胶复合材料, 它是一种简单有效的吸附剂, 可以有效地从水溶液中吸附BaA。在最佳条件下, 染色质/卡拉胶复合材料对BaA吸附率为94%, 吸附量为0. 0075mg·g-1, 该吸附过程受到反应时间、反应温度、pH值和复合材料剂量的影响, 其中, 高温或低温、酸性或碱性环境都会降低吸附率。然而, 随着反应时间的延长或复合材料剂量的增加, 吸附率将逐渐提高。染色质/卡拉胶复合材料去除BaA的过程更符合准二级动力学模型和Langmuir模型, 且热力学模型进一步表明该过程是自发进行的。以上结果表明, 染色质/卡拉胶复合材料可以作为吸附BaA的新型吸附剂。 |
Abstract | Benzoanthracene (BaA) is one of the most important pollutants in polycyclic aromatic hydrocarbons ( PAHs) , with characteristics such as wide distribution, strong stability, strong bioaccumulation, and strong carcinogenicity, seriously endangering human health and the environment. In this study, a novel chromatin/carrageenan composite materials was prepared based on the intercalation binding between BaA and DNA, which is a simple and effective adsorbent that can effectively adsorb BaA from aqueous solution. Under optimal conditions, the chromatin/carrageenan composite material exhibits a BaA adsorption efficiency of 94% and an adsorption amount of 0. 0075mg·g-1. This adsorption process is influenced by reaction time, reaction temperature, pH value, and the dosage of the composite materials. Among them, high or low temperatures, acidic or alkaline environments will all reduce the adsorption efficiency. However, with the extension of reaction time or the increase of composite materials dosage, the adsorption efficiency will gradually increase. The process of removing BaA from chromatin/carrageenan composite material is more in line with pseudo-second-order kinetic model and Langmuir model, and thermodynamic model further indicated that the process is spontaneous. The above results indicate that chromatin/ carrageenan composite materials can serve as a novel adsorbent for BaA adsorption. |
DOI | 10.48014/ais.20250226001 |
文章类型 | 研究性论文 |
收稿日期 | 2025-02-26 |
接收日期 | 2025-03-02 |
出版日期 | 2025-03-28 |
关键词 | 染色质, 卡拉胶, 苯并蒽, 吸附 |
Keywords | Chromatin, Carrageenan, Benzoanthracene, adsorbtion |
作者 | 臧萌, 李军生*, 黄国霞, 阎柳娟, 马纪 |
Author | ZANG Meng, LI Junsheng*, HUANG Guoxia, YAN Liujuan, MA Ji |
所在单位 | 广西科技大学生物与化学工程学院, 柳州 545006 |
Company | School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China |
浏览量 | 145 |
下载量 | 29 |
基金项目 | 本项研究得到了国家自然科学基金项目(资助号22265003、21966008)的资助。 |
参考文献 | [1] HOSSAIN M D T, GIRASE A G, ORMOND R B. Evaluating the performance of surfactant and charcoal-based cleaning products to effectively remove PAHs from firefighter gear[J]. Frontiers in Materials, 2023, 10: 1142777. https://doi.org/10.3389/fmats.2023.1142777. [2] HUSSAR E, RICHARDS S, LIN Z-Q, et al. Human Health Risk Assessment of 16 Priority Polycyclic Aromatic Hydrocarbons in Soils of Chattanooga, Tennessee, USA[J]. Water Air and Soil Pollution, 2012, 223(9): 5535-5548. https://doi.org/10.1007/s11270-012-1265-7. [3] MA L L, MA C, SHI Z M, et al. Effects of fluoranthene on the growth, bioavailability and anti-oxidant system of Eisenia fetida during the ageing process[J]. European Journal of Soil Biology, 2012, 50: 21-27. https://doi.org/10.1016/j.ejsobi.2011.11.005. [4] ÖNDER K, MURAT B, ERCAN S, et al. The combined effects of polyethylene microplastics and benzoanthracene on Manila clam Ruditapes philippinarum[J]. Chemosphere, 2023, 329: 138664. https://doi.org/10.1016/j.chemosphere.2023.138664. [5] ZHANG J, LIN X, LIU W, et al. Effect of organic wastes on the plant-microbe remediation for removal of aged PAHs in soils[J]. Journal of Environmental Sciences, 2012, 24(8): 1476-1482. https://doi.org/10.1016/S1001-0742(11)60951-0. [6] ASYIKIN I N, NORHAFEZAH K, NURHIDAYAH H. Microbial Bioremediation Techniques for Polycyclic Aromatic Hydrocarbon(PAHs)-a Review[J]. Water, Air, & Soil Pollution, 2022, 233(4): 124. https://doi.org/10.1007/s11270-022-05598-6. [7] BORJI H, AYOUB G M, AL-HINDI M, et al. Nanotechnology to remove polychlorinated biphenyls and polycyclic aromatic hydrocarbons from water: a review[J]. Environmental Chemistry Letters, 2020, 18(3): 729-746. https://doi.org/10.1007/s10311-020-00979-x. [8] RAYAROTH M P, MARCHEL M, BOCZKAJ G. Advanced oxidation processes for the removal of mono and polycyclic aromatic hydrocarbons-A review[J]. Science of the Total Environment, 2023, 857: 159043. https://doi.org/10.1016/j.scitotenv.2022.159043. [9] SANCHES S, LEITAO C, PENETRA A, et al. Direct photolysis of polycyclic aromatic hydrocarbons in drinking water sources[J]. Journal of Hazardous Materials, 2011, 192(3): 1458-1465. https://doi.org/10.1016/j.jhazmat.2011.06.065. [10] XU Q, YUAN H, WANG H, et al. A Review on Modification Methods of Adsorbents for Naphthalene in Environment[J]. Catalysts, 2022, 12(4): 398. https://doi.org/10.3390/catal12040398. [11] LERMAN L S. Structural considerations in the interaction of DNA and acridines[J]. Journal of molecular biology, 1961, 3: 18-30. https://doi.org/10.1016/S0022-2836(61)80004-1. [12] HUANG G X, MA J, LI J S, et al. Study on the interaction between aflatoxin M1 and DNA and its application in the removal of aflatoxin M1[J]. Journal of Molecular Liquids, 2022, 355: 118938. https://doi.org/10.1016/j.molliq.2022.118938. [13] LI J S, WANG X X, FENG Z, et al. Optimization of aflatoxin B1 removal efficiency of DNA by resonance light scattering spectroscopy[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2023, 292: 122398. https://doi.org/10.1016/j.saa.2023.122398. [14] LI J, FENG Z, WANG J, et al. Interaction of aflatoxin G1 with free DN in vitro and possibility of its application in removing aflatoxin G1[J]. Journal of Environmental Science and Health Part B-Pesticides Food Contaminants and Agricultural Wastes, 2021, 56(10): 932-940. https://doi.org/10.1080/03601234.2021.1979838. [15] LI J S, WANG J, FAN J F, et al. Binding characteristics of aflatoxin B1 with free DNA in vitro[J]. Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy, 2020, 230: 118054. https://doi.org/10.1016/j.saa.2020.118054. [16] MA J, HUANG G X, MO C, et al. Insights into the intercalative binding of benzo b fluoranthene with herring sperm DNA in vitro and its application[J]. Journal of Molecular Liquids, 2023, 378: 121628. https://doi.org/10.1016/j.molliq.2023.121628. [17] XIONG Y N, LI J S, HUANG G X, et al. Interacting mechanism of benzo(a)pyrene with free DNA in vitro [J]. International Journal of Biological Macromolecules, 2021, 167: 854-861. https://doi.org/10.1016/j.ijbiomac.2020.11.042. [18] ZHANG J, LI J S, HUANG G X, et al. DNA Extracted from Byproducts of Common Carp Testis and Application in Removing Ethidium Bromide from Pollutants[J]. Journal of Aquatic Food Product Technology, 2022, 31(6): 536-548. https://doi.org/10.1080/10498850.2022.2080516. [19] HUANG G X, MA J, LI J S, et al. Removal of 1, 2- benzanthracene via the intercalation of 1, 2-benzanthracene with DNA and magnetic bead-based separation[J]. Nucleosides Nucleotides & Nucleic Acids, 2021, 40(2): 137-156. https://doi.org/10.1080/15257770.2020.1839905. [20] JIANG Z K, LI J S, HUANG G X, et al. Efficient removal of ethidium bromide from aqueous solutions using chromatin-loaded chitosan polyvinyl alcohol composites[J]. Environmental science and pollution research international, 2024, 31(2): 3276-3295. https://doi.org/10.1007/s11356-023-31364-0. [21] ZHANG J, LI J S, HUANG G X, et al. Chromatin extracted from common carp testis as an economical and easily available adsorbent for ethidium bromide decontamination[J]. Heliyon, 2022, 8(6): e09565. https://doi.org/10.1016/J.HELIYON.2022.E09565. [22] JIANG Z K, LI J S, HUANG G X, et al. Common carp sperm chromatin as an economical and effective remover for benzo(a)pyrene from pollutants[J]. Heliyon, 2024, 10(12): e33137. https://doi.org/10.1016/J.HELIYON.2024.E33137. [23] LUNDBERG P, BRUIN A, KLIJNSTRA J W, et al. Poly( ethylene glycol)-Based Thiol-ene Hydrogel Coatings- Curing Chemistry, Aqueous Stability, and Potential Marine Antifouling Applications[J]. Acs Applied Materials & Interfaces, 2010, 2(3): 903-912. https://doi.org/10.1021/am900875g. [24] KAROYO A H, WILSON L D. A Review on the Design and Hydration Properties of Natural Polymer- Based Hydrogels[J]. Materials, 2021, 14(5): 1095. https://doi.org/10.3390/ma14051095. [25] TOLSTOGUZOV V. Some thermodynamic considerations in food formulation[J]. Food Hydrocolloids, 2003, 17(1): 1-23. https://doi.org/10.1016/S0268-005X(01)00111-4. [26] CAMPO V L, KAWANO D F, DA SILVA D B, JR. , et al. Carrageenans: Biological properties, chemical modifications and structural analysis-A review[J]. Carbohydrate Polymers, 2009, 77(2): 167-180. https://doi.org/10.1016/j.carbpol.2009.01.020. [27] ARTMAN M, ROTH J S. Chromosomal RNA: an artifact of preparation?[J]. Journal of molecular biology, 1971, 60(2): 291-301. https://doi.org/10.1016/0022-2836(71)90295-6. [28] LE PECQ J B, PAOLETTI C. A new fluorometric method for RNA and DNA determination[J]. Analytical biochemistry, 1966, 17(1): 100-107. https://doi.org/10.1016/0003-2697(66)90012-1. [29] CHENG Z, KURU E, SACHDEVA A, et al. Fluorescent amino acids as versatile building blocks for chemical biology[J]. Nature Reviews Chemistry, 2020, 4(6): 275-290. https://doi.org/10.1038/s41570-020-0186-z. [30] HUANG G X, LI J S, YAN L J, et al. Adsorption of 1, 2-Benzanthracene from Aqueous Solution by DNA-Conjugated Magnetic Nanoparticles[J]. Water Air & Soil Pollution, 2022, 233(1): 9. https://doi.org/10.1007/s11270-021-05476-7. [31] JANGIR D K, CHARAK S, MEHROTRA R, et al. FT- IR and circular dichroism spectroscopic study of interaction of 5-fluorouracil with DNA[J]. Journal of Photochemistry and Photobiology B-Biology, 2011, 105(2): 143-148. https://doi.org/10.1016/j.jphotobiol.2011.08.003. [32] JANGIR D K, TYAGI G, MEHROTRA R, et al. Carboplatin interaction with calf-thymus DNA: A FTIR spectroscopic approach[J]. Journal of Molecular Structure, 2010, 969(1-3): 126-129. https://doi.org/10.1016/j.molstruc.2010.01.052. [33] SAITO S T, SILVA G, PUNGARTNIK C, et al. Study of DNA-emodin interaction by FTIR and UV-vis spectroscopy[J]. Journal of Photochemistry and Photobiology B-Biology, 2012, 111: 59-63. https://doi.org/10.1016/j.jphotobiol.2012.03.012. [34] DENG Y E, ZHOU Q, SUN S Q. Analysis and discrimination of infant powdered milk via FTIR spectroscopy[J]. Guang pu xue yu guang pu fen xi = Guang pu, 2006, 26(4): 636-639. https://doi.org/10.1016/j.sab.2006.01.014. [35] VIEIRA W T, DA SILVA M G C, NASCIMENTO L D O, et al. k-Carrageenan/sericin-based multiparticulate systems: A novel gastro-resistant polymer matrix for indomethacin delivery[J]. International Journal of Biological Macromolecules, 2023, 232: 123381. https://doi.org/10.1016/j.ijbiomac.2023.123381. [36] EL MIRI N, ABDELOUAHDI K, ZAHOUILY M, et al. Bio-nanocomposite films based on cellulose nanocrystals filled polyvinyl alcohol/chitosan polymer blend[J]. Journal of Applied Polymer Science, 2015, 132(22): 39950. https://doi.org/10.1002/app.42004. [37] OLADIPO A, KPOMAH B, EJEROMEDOGHENE O, et al. Facile fabrication and antibacterial properties of chitosan/acrylamide/gold nanocomposite hydrogel incorporated with Chaetomium globosium extracts from Gingko biloba leaves[J]. International Journal of Biological Macromolecules, 2024, 255: 128194. https://doi.org/10.1016/j.ijbiomac.2023.128194. [38] 龙小菊, 王欣怡, 肖琼, 等. ι-卡拉胶低浓度碱均相提取工艺优化及其性质分析[J]. 食品工业科技, 2015: 1-15. https://doi.org/10.13386/j.issn1002-0306.2024070413. [39] POURETEDAL H R, SADEGH N. Effective removal of Amoxicillin, Cephalexin, Tetracycline and Penicillin G from aqueous solutions using activated carbon nanoparticles prepared from vine wood[J]. Journal of Water Process Engineering, 2014, 1: 64-73. https://doi.org/10.1016/j.jwpe.2014.03.006. [40] GARCIA B, LEAL J M, PAIOTTA V, et al. Intercalation of ethidium into triple-strand poly(rA). 2poly(rU): a thermodynamic and kinetic study[J]. The journal of physical chemistry B, 2006, 110(32): 16131-16138. https://doi.org/10.1021/jp0613283. [41] AHMADPOUR A, EFTEKHARI N, AYATI A. Performance of MWCNTs and a low-cost adsorbent for Chromium(VI)ion removal[J]. Journal of Nanostructure in Chemistry, 2014, 4(4): 171-178. https://doi.org/10.1007/s40097-014-0119-9. [42] FARRAG M, ABRI S, LEIPZIG N D. pH-dependent RNA isolation from cells encapsulated in chitosanbased biomaterials[J]. International Journal of Biological Macromolecules, 2020, 146: 422-430. https://doi.org/10.1016/j.ijbiomac.2019.12.263. [43] VENKATESHA T G, VISWANATHA R, NAYAKA Y A, et al. Kinetics and thermodynamics of reactive and vat dyes adsorption on MgO nanoparticles[J]. Chemical Engineering Journal, 2012, 198-199: 1-10. https://doi.org/10.1016/j.cej.2012.05.071. [44] CHIOU M-S, CHUANG G-S. Competitive adsorption of dye metanil yellow and RB15 in acid solutions on chemically cross-linked chitosan beads[J]. Chemosphere, 2006, 62(5): 731-740. https://doi.org/10.1016/j.chemosphere.2005.04.068. [45] HEIBATI B, YETILMEZSOY K, ZAZOULI M A, et al. Adsorption of ethidium bromide(EtBr)from aqueous solutions by natural pumice and aluminium-coated pumice[J]. Journal of Molecular Liquids, 2016, 213: 41-47. https://doi.org/10.1016/j.molliq.2015.08.063. [46] CHARIZANI A, NOLI F. Investigation of biosorption process of barium radionuclides on pomegranate peel; isotherms, kinetics and mechanism[J]. Journal of Radioanalytical and Nuclear Chemistry, 2022, 331(2): 807-815. https://doi.org/10.1007/s10967-021-08152-6. [47] TRAN H N, YOU S-J, CHAO H-P. Thermodynamic parameters of cadmium adsorption onto orange peel calculated from various methods: A comparison study[J]. Journal of Environmental Chemical Engineering, 2016, 4(3): 2671-2682 https://doi.org/10.1016/j.jece.2016.05.009. [48] MEREY S, SINAYUC C. Gas-in-place calculations in shale gas reservoirs using experimental adsorption data with adsorption models[J]. The Canadian Journal of Chemical Engineering, 2016, 94(9): 1683-1692. https://doi.org/10.1002/cjce.22538. [49] MURUGESAN A, DIVAKARAN M, RAVEENDRAN P, et al. An Eco-friendly Porous Poly(imide-ether)s for the Efficient Removal of Methylene Blue: Adsorption Kinetics, Isotherm, Thermodynamics and Reuse Performances[J]. Journal of Polymers and the Environment, 2019, 27(5): 1007-1024. https://doi.org/10.1007/s10924-019-01408-z |
引用本文 | 臧萌, 李军生, 黄国霞, 等. 染色质/卡拉胶复合材料高效吸附苯并蒽的特性与影响因素分析[J]. 交叉科学学报, 2025, 2(1): 22-36. |
Citation | ZANG Meng, LI Junsheng, HUANG Guoxia, et al. Characteristics and influencing factors of efficient adsorption of Benzoanthracene by Chromatin/Carrageenan composite materials[J]. Acta Interdisciplinary Science, 2025, 2(1): 22-36 |