基于G-GhostNets轻量化网络的高光谱图像分类

Hyperspectral Image Classification Based on the Lightweight G-GhostNets Network

高光谱图像分类在遥感图像研究中具有广泛用途, 然而在嵌入式设备中应用深度学习模型执行高光谱图像分类任务时, 会面临参数量大和计算速度慢的问题, 本文主要针对GPU设备, 提出了使用轻量化网络G-GhostNets, 该网络同时考虑了图像的光谱特征和空间特征, 并且采用聚合中间特征的G-Ghost Stage使模型在GPU上运行, 保持高精度的同时能够进行高效计算。为验证其性能, 本研究将ResNet50和C-GhostNets作为对比网络, 分别对经过预处理的Pavia University 、Indian Pines以及Salinas数据集进行分类实验。实验结果表明, G-GhostNets在高光谱图像分类任务上具有优异的性能, 在保证高精度的同时能够在GPU上高效运行, 能够在较短的时间内实现对每一类的高精度推理。

Hyperspectral image classification (HSIC) has been widely applied in remote sensing image analysis. However, deploying deep learning models on embedded devices for HSIC tasks faces challenges due to excessive parameters and high computational complexity. To address these issues, this paper proposes the lightweight G-GhostNets network optimized for GPU devices. G-GhostNets effectively integrates both spectral and spatial features of hyperspectral images. By introducing the G-Ghost Stage, which aggregates intermediate features, the model achieves high-precision classification while maintaining computational efficiency on GPUs. To validate its performance, this study used ResNet50 and C-GhostNets as comparative networks and conducted classification experiments on preprocessed Pavia University, Indian Pines, and Salinas datasets, respectively. The experimental results demonstrate that G-GhostNets exhibits outstanding performance in HSIC tasks, delivering high accuracy and efficient GPU-based inference with significantly reduced computational time per class.