摘要 | 全球导航卫星系统反射测量技术 (GNSS-R) 凭借其低成本、信号穿透性强、全天候观测等优势, 在海面风速反演领域展现出巨大潜力。然而, 由于CYGNSS卫星的覆盖范围有限, 当前星载GNSS-R研究主要集中于低纬度区域, 缺乏对GNSS-R风速反演在全球范围内适用性的系统验证。为此, 本文基于天目一号气象星座 (TM-1) L2海面风速产品, 结合欧洲中期天气预报中心第五代全球再分析资料ERA5, 从风速区间、GNSS信号源及地理区域三个维度系统评估GNSS-R风速反演的全球适用性。统计结果表明: TM-1风速产品具备全球范围反演能力, 整体均方根误差 (RMSE) 为2. 22m/s, 且反演精度呈现显著的风速依赖性。10m/s以下的低风速区间反演精度较高, 但随风速增大反演精度逐渐下降, 尤其在高风速条件下对海洋表面粗糙度变化的感知能力存在一定局限性。此外, 不同GNSS信号源的风速反演精度存在差异, 其中Galileo信号最优, Glonass信号最差。在地理分布上, 风速反演精度随纬度增加呈下降趋势, 表现出明显的纬度梯度特征。这一现象表明, GNSS-R在低纬度地区具有良好的适用性, 但在高纬度极地地区受海冰覆盖、风浪增强等因素影响, 反演误差显著增加。本研究为GNSS-R风速反演的全球适用性提供了量化评估, 为未来GNSS-R在中高纬度及高风速条件下的优化应用奠定了基础。 |
Abstract | Global Navigation Satellite System Reflectometry (GNSS-R) technology demonstrates significant potential in sea surface wind speed retrieval due to its advantages of low cost, strong signal penetration, and all-weather observation capabilities. However, current spaceborne GNSS-R research primarily focuses on low-latitude regions owing to the limited coverage of CYGNSS satellites, lacking systematic validation of GNSS-R wind speed retrieval' s global applicability. Therefore, this study systematically evaluates the global applicability of GNSS-R wind speed retrieval from three dimensions—wind speed range, GNSS signal sources, and geographical regions—using the Tianmu-1 meteorological constellation (TM-1) L2 sea surface wind speed product combined with ERA5, the fifth-generation global reanalysis data from the European Centre for Medium-Range Weather Forecasts. Statistical results indicate that TM-1 wind speed products exhibit global inversion capability with an overall root mean square error (RMSE) of 2. 22m/s, and the inversion accuracy shows a significant dependence on wind speed. The inversion accuracy is higher in the low wind speed range below 10m/s, but the inversion accuracy gradually decreases with increasing wind speed, particularly demonstrating limitations in sensing sea surface roughness variations under high wind speeds. Furthermore, wind speed retrieval accuracy varies among different GNSS signal sources, with Galileo signals showing optimal performance and Glonass signals the poorest. Geographically, inversion accuracy decreases with increasing latitude, displaying distinct latitudinal gradient characteristics. This phenomenon suggests GNSS-R maintains good applicability in low-latitude regions, while experiencing significantly increased inversion errors in high-latitude polar areas due to sea ice coverage and enhanced wind-wave interactions. This research provides quantitative assessment of GNSS-R' s global applicability for wind speed retrieval and establishes a foundation for optimizing GNSS-R applications in mid-high latitude regions and high wind speed conditions. |
DOI | 10.48014/ais.20250303002 |
文章类型 | 研究性论文 |
收稿日期 | 2025-03-03 |
接收日期 | 2025-03-09 |
出版日期 | 2025-06-28 |
关键词 | 海面风速, GNSS-R, TM-1 |
Keywords | Sea surface wind speed, GNSS-R, TM-1 |
作者 | 潘跃威, 宋冬梅* |
Author | PAN Yuewei, SONG Dongmei* |
所在单位 | 中国石油大学 (华东) 海洋与空间信息学院, 青岛 266580 |
Company | School of Oceanography and Space Informatics, China University of Petroleum (East China) , Qingdao 266580, China |
浏览量 | 3 |
基金项目 | 本研究得到国家自然科学基金(资助号:U22A20586,41772350,61371189)、山东省重点研发计划项目(资助号:2019GGX101033)的资助。 |
参考文献 | [1] 刘原华, 冯琳芳, 牛新亮. GNSS-R海面风场数据处理技术探讨[J]. 导航定位学报, 2020, 8(3): 76-80. https://doi.org/10.3969/j.issn.2095-4999.2020.03.012. [2] 万玮, 陈秀万, 彭学峰, 等. GNSS遥感研究与应用进展和展望[J]. 遥感学报, 2016, 20(5): 858-874. https://doi.org/10.11834/jrs.20166228. [3] 杨东凯, 刘毅, 王峰. 星载GNSS-R海面风速反演方法研究[J]. 电子与信息学报, 2018, 40(02): 462-469. https://doi.org/10.11999/JEIT170490. [4] Milad A, Caroline A, Tobias W, et al. GNSS reflectometry global ocean wind speed using deep learning: Development and assessment of CyGNSSnet[J]. Remote Sensing of Environment, 2022, 269: 112801. https://doi.org/10.1016/j.rse.2021.112801. [5] Wang C, Yu K, Qu F, et al. Spaceborne GNSS-R Wind Speed Retrieval Using Machine Learning Methods. Remote Sensing. 2022; 14(14): 3507. https://doi.org/10.3390/RS14143507. [6] Xiaohui L, Dongkai Y, Jingsong Y, et al. Analysis of coastal wind speed retrieval from CYGNSS mission using artificial neural network[J]. Remote Sensing of Environment, 2021, 260: 112454. https://doi.org/10.1016/J.RSE.2021.112454. [7] Daixin Z, Konrad H, Milad A, et al. DDM-Former: Transformer networks for GNSS reflectometry global ocean wind speed estimation[J]. Remote Sensing of Environment, 2023, 294: 113629. https://doi.org/10.1016/J.RSE.2023.113629. [8] 梁月吉, 蒋雪玉, 党毓茜, 等. 基于机器学习的海面风速和有效波高联合反演[J]. 海洋测绘, 2024, 44(04): 64-68. https://doi.org/10.3969/j.issn.1671-3044.2024.04.014. [9] 刘晓燕, 张萌, 林晓娟, 等. HY-2D 卫星散射计海面风场产品在西北太平洋区域的适用性分析[J]. 海洋预报, 2024, 41(5): 89-98 https://doi.org/10.11737/j.issn.1003-0239.2024.05.009. [10] 夏天竹, 李肖霞, 于润玲, 等. 基于四种资料的超强台风利奇马(1909)期间海面风变化特征对比分析[J]. 大气科学, 2024, 48(06): 2374-2388. https://doi.org/10.3878/j.issn.1006-9895.2306.23042. [11] Xia J, Liu Q, Tan L. A Deep Learning Method Integrating Multisource Data for ECMWF Forecasting Products Correction[J/OL]. IEEE Geoscience and Remote Sensing Letters, 2023, 20: 1-5. https://doi.org/10.1109/LGRS.2023.3307717. [12] Clarizia M P, Ruf C S. Wind Speed Retrieval Algorithm for the Cyclone Global Navigation Satellite System(CYGNSS)Mission[J]. IEEE Transactions on Geoenceand Remote Sensing, 2016, 54(8): 4419-4432. https://doi.org/10.1109/TGRS.2016.2541343. |
引用本文 | 潘跃威, 宋冬梅. 基于TM-1的GNSS-R海面风速反演全球适用性分析[J]. 交叉科学学报, 2025, 2(2): 58-66. |
Citation | PAN Yuewei, SONG Dongmei. Global Applicability Analysis of GNSS-R sea surface wind speed retrieval based on TM-1[J]. Acta Interdisciplinary Science, 2025, 2(2): 58-66. |