摘要 | 海上溢油事故频发, 对海洋环境、区域经济及人类健康造成了深远影响。海上溢油溯源作为确定海洋污染责任主体的有效手段, 对及时阻断溢油源头、减少溢油量以及解决海洋污染责任纠纷具有重要意义。本文主要分析海上溢油污染溯源的多种技术手段, 分别总结化学法和物理法溢油溯源的发展现状。化学法又称油指纹鉴别法, 主要通过现场采集溢油样本, 化验分析油品信息, 并与周边海域的潜在油种进行比对, 推测海面溢油的来源。物理法主要利用历史海洋环境数据驱动溢油溯源数值模型, 反向推演溢油污染的时空迁移规律。本文最后探讨了溢油溯源领域的当前挑战和未来方向。油指纹分析在多源污染辨识方面会导致溯源准确性下降。溢油溯源数值模型在复杂海洋环境下的溯源误差会增大。建立“AI +数值模型”混合溯源系统、发展多源监测技术、推动全球油指纹数据库共享等方面具有广阔的发展前景。 |
Abstract | The frequent occurrence of offshore oil spills has a profound impact on the marine environment, regional economy and human health. As an effective means to determine the subject of marine pollution responsibility, the backtracking of marine oil spills is of great significance for timely blocking the source of oil spills, reducing the amount of oil spillage and solving marine pollution liability disputes. This paper mainly analyzes the various technical means of oil spill backtracking research at sea, summarizes the development status of oil spill backtracking by chemical and physical methods. Chemical method, also known as oil fingerprint identification method, mainly collects oil spill samples on site, tests and analyzes oil information, and compares them with potential oil species in the surrounding sea to infer the source of oil spill on the sea surface. The physical method mainly uses the historical marine environmental data to drive the numerical model of oil spill backtracking, and reverse deduce the spatio-temporal migration law of oil spill pollution. The paper concludes with a discussion of current challenges and future directions in the field of oil spill backtracking. Oil fingerprint analysis will lead to a decrease in the accuracy of traceability in the identification of multi-source pollution. The error of oil spill traceability numerical model will increase in complex ocean environment. The establishment of "AI + numerical model" hybrid backtracking system, the development of multi-source monitoring technology, and the promotion of global oil fingerprint database sharing have broad development prospects. |
DOI | 10.48014/ais.20250317002 |
文章类型 | 综 述 |
收稿日期 | 2025-03-17 |
接收日期 | 2025-03-20 |
出版日期 | 2025-06-28 |
关键词 | 溢油溯源, 油指纹, 数值模型, 海洋污染 |
Keywords | Oil spill backtracking, oil fingerprint, numerical model, marine pollution |
作者 | 陈清菡1, 代明月1, 谭艺雯2, 邸萌萌2, 李永庆1,* |
Author | CHEN Qinghan1, DAI Mingyue1, TAN Yiwen2, DI Mengmeng2, LI Yongqing1,* |
所在单位 | 1. 青岛科技大学 数据科学学院, 青岛 266061 2. 中国电波传播研究所, 青岛 266107 |
Company | 1. School of Data Science, Qingdao University of Science and Technology, Qingdao 266061, China 2. China Research Institute of Radiowave Propagation, Qingdao 266107, China |
浏览量 | 8 |
下载量 | 1 |
基金项目 | 国家自然科学基金项目(42406216)、山东省自然科学基金项目(ZR2024QD031)资助。 |
参考文献 | [1] 牟林, 赵前. 海洋溢油污染应急技术[M]. 北京: 科学出版社, 2011. [2] 郑洪波, 张树深. 溢油环境污染事故应急处置实用技术[M]. 北京: 中国环境出版社, 2015. [3] 张彤, 宋春诤, 高一楠, 等. 海上溢油事故对海洋生态系统的影响———以“河北精神”号溢油事件为例[J]. 海洋信息, 2015, 3: 45-49. https://doi.org/10.3969/j.issn.1005-1724.2015.03.009 [4] 廖国祥. “深水地平线”事故深海溢油输移扩散的数值模 拟[J]. 海洋开发与管理, 2022, 39(4): 89-96. https://doi.org/10.16028/j.1005-981x.2022.04.009 [5] 马彩华, 纪银环, 马伟伟, 等. 基于生境等价分析法的溢油生态损害价值评估———以大连新港为例[J]. 海洋开发与管理, 2023, 40(1): 58-66. https://doi.org/10.20016/j.cnki.hykfygl.20230202.009 [6] 匡翠萍, 谢华浪, 苏平, 等. 蓬莱19-3溢油运移与归宿数值模拟和分析[J]. 同济大学学报(自然科学版), 2016, 44(10): 1585-1594. https://doi.org/10.11908/j.issn.0253-374x.2016.10.017 [7] 陆应诚, 刘建强, 丁静, 等. 中国东海“桑吉”轮溢油污染类型的光学遥感识别[J]. 科学通报, 2019, 64(31): 3213-3222. [8] Liubartseva S, Smaoui M, Coppini G, et al. Model-based reconstruction of the Ulysse-Virginia oil spill, October- November 2018[J]. Marine Pollution Bulletin, 2020, 154: 111002. https://doi.org/10.1016/j.marpolbul.2020.111002 [9] 马桂山. 交通运输部海事局局长曹德胜赴青岛指导船舶溢油处置工作[J]. 中国海事, 2021(5): 2. [10] 贾艺, 王军, 荆晶. 溢油分散剂及分散原油对海洋生物的毒性效应研究进展[J]. 海洋湖沼通报, 2021, 43(4): 108-113. https://doi.org/10.13984/j.cnki.cn37-1141.2021.04.015 [11] Aranguren-Abadía L, Yadetie F, Donald C E, et al. Photo- enhanced toxicity of crude oil on early developmental stages of Atlantic cod(Gadus morhua)[J]. Science of the Total Environment, 2022, 807: 150697. https://doi.org/10.1016/j.scitotenv.2021.150697 [12] 聂宁, 俞博凡, 乔冰. 海洋污染损害碳稳定性同位素比值差异性溯源分析实验技术———以船舶溢油污染事故为例[J]. 海洋环境科学, 2021, 40(5): 782-789. https://doi.org/10.12111/j.mes.20200142 [13] 陈勤思, 胡松, 张春玲, 等. 海洋溢油溯源数值模拟方法的研究进展[J]. 海洋通报, 2022, 41(5): 481-490. https://doi.org/10.12785/jms.2022.4105.001 [14] 白红妍. 苯系物鉴定及溯源方法研究[D]. 上海: 上海海洋大学, 2013. https://doi.org/10.12111/j.mes.20200142 [15] 杨世莉, 孙冰, 严志宇, 等. 海水中沉底油的风化特性及鉴别方法研究[J]. 海洋科学, 2014, 38(08): 46-51. https://doi.org/10.11759/hykx20130530004 [16] 张乐. 地表水石油类污染溯源及油指纹多元统计分析的研究[D]. 杭州: 浙江工业大学, 2019. https://doi.org/10.27463/d.cnki.gzgyu.2019.000473. [17] 郭亮. 紫外荧光法在石油平台防溢油的应用研究[J]. 中国设备工程, 2024,(22): 250-252. https://doi.org/10.19336/j.cnki.cn11-5331/tb.2024.22.010 [18] Ren P, Jia Q, Xu Q, Yongqing Li, et al. Oil spill driftprediction enhanced by correcting numerically forecastedsea surface dynamic fields with adversarial temporalconvolutional networks[J]. IEEE Transactions on Geoscienceand Remote Sensing, 2025, 63: 1-18. https://doi.org/10.1109/TGRS.2025.3528631 [19] Li Y, Huang W, Lyu X, et al. An adversarial learningapproach to forecasted wind field correction with an applicationto oil spill drift prediction[J]. InternationalJournal of Applied Earth Observation and Geoinformation, 2022, 112: 102924. https://doi.org/10.1016/j.jag.2022.102924 [20] Chen H. Performance of a simple backtracking methodfor marine oil source searching in a 3D ocean[J]. MarinePollution Bulletin, 2019, 142: 321-334. https://doi.org/10.1016/j.marpolbul.2019.03.045 [21] Ciappa A, Costabile S. Oil spill hazard assessment usinga reverse trajectory method for the Egadi marine protectedarea(Central Mediterranean Sea)[J]. MarinePollution Bulletin, 2014, 84(1-2): 44-55. https://doi.org/10.1016/j.marpolbul.2014.05.044 [22] Ciappa A C. Reverse trajectory study of oil spill risk inCyclades Islands of the AegeanSea[J]. Regional Studiesin Marine Science, 2021, 41: 101580. https://doi.org/10.1016/j.rsma.2020.101580 [23] Putman N F, Abreu-Grobois F A, Iturbe-Darkistade I, et al. Deepwater Horizon oil spill impacts on sea turtlescould span the Atlantic[J]. Biology Letters, 2015, 11(12): 20150596. https://doi.org/10.1098/rsbl.2015.0596 [24] 高松, 黄娟, 白涛, 等. 无主漂油源集合预测方法研究[J]. 海洋科学, 2014, 38(3): 42-45. https://doi.org/10.11759/hykx20131021002 [25] 曹雅静, 高松, 丁一, 等. 渤海海域油污溯源模拟预测研究[J]. 广西科学院学报, 2016, 32(2): 83-87. https://doi.org/10.13497/j.1005-9474.2016.02.014 [26] Breivik Ø, Bekkvik T C, Wettre C, et al. BAKTRAK: backtracking drifting objects using an iterative algorithmwith a forward trajectory model[J]. Ocean Dynamics, 2012, 62: 239-252. https://doi.org/10.1007/s10236-011-0496-2 [27] Tian S, Huang X, Li H. A new method to locate oil spillorgin with modified Lagrangian model-A case study ofPL19-3 oil spill accident[C]. 2016 IEEE InternationalGeoscience and Remote Sensing Symposium(IGARSS). IEEE, 2016: 4477-4480. https://doi.org/10.1109/IGARSS.2016.7730167 [28] Tian S, Huang X, Li H. A new method to calibrate Lagrangianmodel with ASAR images for oil slick trajectory[J]. Marine Pollution Bulletin, 2017, 116(1-2): 95-102. https://doi.org/10.1016/j.marpolbul.2017.01.055 [29] Suneel V, Ciappa A, Vethamony P. Backtrack modelingto locate the origin of tar balls depositing along thewest coast of India[J]. Science of the Total Environment, 2016, 569: 31-39. https://doi.org/10.1016/j.scitotenv.2016.06.071 [30] Li Y, Lyu X, Ren P. Oil Spill Timely Backtracking Orientedby Wind Field Correction With Self-AttentionTemporal Convolutional Networks[J]. IEEE Journal ofOceanic Engineering, 2024, 49(1): 114-132. https://doi.org/10.1109/JOE.2024.3487337 [31] Ambjörn C, Liungman O, Mattsson J, et al. SeatrackWeb: the HELCOM tool for oil spill prediction and identificationof illegal polluters[J]. Oil Pollution in theBaltic Sea, 2014: 155-183. https://doi.org/10.1007/978-3-642-38476-9 [32] Al-Salem K, Alosairi Y Y, Al-Rashed A A. Developmentof a backtracking numerical model for offshoreoil spills[J]. Journal of Engineering Research, 2017, 5(1): 1-22. https://doi.org/10.12785/jer.0501.11 [33] Janeiro J, Neves A, Martins F, et al. Integrating technologiesfor oil spill response in the SW Iberiancoast[J]. Journal of Marine Systems, 2017, 173: 31-42. https://doi.org/10.1016/j.jmarsys.2017.04.012 [34] Abascal A J, Castanedo S, Fernández V, et al. Backtrackingdrifting objects using surface currents fromhigh-frequency(HF)radar technology[J]. Ocean Dynamics, 2012, 62: 1073-1089. https://doi.org/10.1007/s1057-2-012-0504-4 [35] Abascal A J, Sanchez J, Chiri H, et al. Operational oilspill trajectory modelling using HF radar currents: Anorthwest European continental shelf case study[J]. Marine Pollution Bulletin, 2017, 119(1): 336-350. https://doi.org/10.1016/j.marpolbul.2017.04.053 |
引用本文 | 陈清菡, 代明月, 谭艺雯, 等. 海上溢油污染溯源方法综述[J]. 交叉科学学报, 2025, 2(2): 71-77. |
Citation | CHEN Qinghan, DAI Mingyue, TAN Yiwen, et al. Review of backtracking methods for marine oil spill pollution[J]. Acta Interdisciplinary Science, 2025, 2(2): 71-77. |