参考文献
[1] XU J M. Topological Structure and Analysis of Interconnection Networks[M]. Kluwer Academic Publishers, 2001. [2] ADA R, KAISER T, ROSENFELD M, et al. Disjoint Hamilton cycles in the star graph[J]. Inform. Process. Lett. , 2009, 110: 30-35. https://doi.org/10.1016/j.ipl.2009.10.001. [3] BHUYAN L N, AGRAWAL D P. Generalized hypercube and hyperbus structures for a computer network[J]. IEEE Trans. Comput. , 1984, 33: 323-3335. https://doi.org/10.1109/TC.1984.1676437. [4] ZHOU W J, FAN J X, JIA X H, et al. The spined cube: A new hypercube variant with smaller diameter[J]. Inform. Process. Lett. , 2011, 111: 561-5675. https://doi.org/10.1016/j.ipl.2011.03.011. [5] EFE K. A variation on the hypercube with lower diameter[J]. IEEE Trans. Comput. , 1991, 40: 1312-13165. https://doi.org/10.1109/12.102840. [6] YANG X, EVANS D J, MEGSON G M. The locally twisted cubes[J]. Int. J. Comput. Math. , 2005, 82: 401-4135. https://doi.org/10.1080/0020716042000301752. [7] AROCKIARAJ M, SHALINI A J, DELAILA J N. Embedding algorithm of spined cube into grid structure and its wirelength computation[J]. Theoret. Comput. Sci. , 2022, 905: 69-865. https://doi.org/10.1016/j.tcs.2021.12.016. [8] CHENG G L, ZHU Q, WANG X K. On the reliability and fault tolerance of spined cubes[C]//Proceedings of the 2012 International Conference on Wavelet Analysis and Pattern Recognition. Xian, 2012. https://doi.org/1109/ICWAPR.2012.6294799. [9] SATOH K, KANEKO K, HANH P T H, et al. Shortest path routing in spined cubes[C]//2017 6th ICT Inter-national Student Project Conference(ICT-ISPC). Johor, 2017. https://doi.org/10.1109/ICTISPC.2017.8075349. [10] YANG D W, XU Z H, FENG Y Q, et al. Symmetric property and edge-disjoint Hamiltonian cycles of the spined cube[J]. Appl. Math. Comput. , 2023, 452: 1280755. https://doi.org/10.1016/j.amc.2023.128075. [11] YANG D W, FENG Y Q, KWAK J H, et al. Fault-tolerant edge-bipancyclicity of faulty hypercubes under the conditional-fault model[J]. Inform. Sci. , 2016, 329: 317-3285. https://doi.org/10.1016/j.ins.2015.09.029. [12] CHENG D. Embedding mutually edge-disjoint cycles into locally twisted cubes[J]. Theor. Comput. Sci. , 2022, 929: 11-175. https://doi.org/10.1016/j.tcs.2022.06.027. [13] LIN T J, HSIEH S Y, JUAN J S T. Embedding cycles and paths in product networks and their applications to multi-processor systems[J]. IEEE Trans. Parallel Distrib. Syst. , 2012, 23(6): 1081-1089. https://doi.org/10.1109/TPDS.2011.245. [14] KUNG T L, CHEN H C. Complete cycle embedding in crossed cubes with two-disjoint-cycle-cover pancyclicity[J]. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. , 2015, E98-A(12): 2670-26765. https://doi.org/10.1587/transfunE98.A.2670. [15] NIU R, ZHOU S, XU M. Two-disjoint-cycle-cover vertex bipancyclicity of bipartite hypercube-like networks[J]. Theoret. Comput. Sci. , 2023, 947: 1137035. https://doi.org/10.1016/j.tcs.2023.113703. [16] KUNG T L, CHEN H C, LIN C H, et al. Three types of two-disjoint-cycle-cover pancyclicity and their applications to cycle embedding in locally twisted cubes[J]. Computer J. , 2021, 64: 27-375. https://doi.org/10.1093/comjnl/bxz134. [17] ROWLEY R, BOSE B. Edge-disjoint Hamiltonian cycles in de Bruijn networks[C]//Proc. 6th Distributed Memory Computing Conference, 1991: 707-7095. https://doi.org/10.1109/DMCC.1991.633359. [18] HUSSAIN Z A, BOSE B, AL-DHELAAN A. Edge disjoint Hamiltonian cycles in Eisenstein-Jacobi networks[J]. J. Parallel Distrib. Comput. , 2015, 86: 62-705. https://doi.org/10.1016/j.jpdc.2015.08.003. [19] PAI K J, WU R Y, PENG S L, et al. Explore all metrics Three edge-disjoint Hamiltonian cycles in crossed cubes with applications to fault-tolerant data broadcasting[J]. J. Supercomput. , 2022, 29: 4126-41455. https://doi.org/10.1109/HPCCDSSSmartCityDependSys53884.2021.00074 [20] PAI K J. Embedding Three Edge-Disjoint Hamiltonian Cycles into Locally Twisted Cubes[C]//Lecture Notes in Comput. Sci. Computing and Combinatorics: vol. 13025. Tainan, Taiwan, 2021: 367-3745. https://doi.org/10.1007/9783030895433_31. [21] LÜ H Z, WU T Z. Edge-disjoint Hamiltonian cycles of balanced hypercubes[J]. Inform. Process. Lett. , 2019, 144: 25-305. https://doi.org/10.1016/j.ipl.2018.12.004. [22] HASUNUMA T. Completely independent spanning trees in the underlying graph of a line digraph[J]. Discrete Math. , 2001, 234: 149-1575. https://doi.org/10.1016/S0012365X(00)003770. [23] HASUNUMA T. Completely independent spanningtrees in maximal planar graphs[M]//Lecture Notes inComput. Sci. Proc. 28th Int. Workshop on Graph-TheoreticConcepts in Computer Science, WG 2002, 2573: 235-2455. https://doi.org/10.1007/3540363793_21. [24] PAI K J, CHANG J M. Improving the diameters ofcompletely independent spanning trees in locally twistedcubes[J]. Inform. Process. Lett. , 2019, 141: 22-245. https://doi.org/10.1016/j.ipl.2018.09.006. [25] PAI K J, CHANG J M. Constructing two completelyindependent spanning trees in hypercube-variant networks[J]. Theoret. Comput. Sci. , 2016, 652: 28-375. https://doi.org/10.1016/j.tcs.2016.08.024. [26] BONDY J A, MURTY U S R. Graph Theory with Applications[M]. New York: Elsevier North Holland, 1976. [27] VAIDYA A S, RAO P S N, SHANKAR S R. A class ofhypercube-like networks[C]//Proceedings of the 5thIEEE Symposium on Parallel and Distributed Proceeding(SPDP), 1993: 800-8035. [28] PARK C D, CHWA K Y. Hamiltonian properties onthe class of hypercube-like networks[J]. Inform. Process. Lett. , 2004, 91(1): 11-175. https://doi.org/10.1016/j.ipl.2004.03.009. [29] PARK J H,KIM H C,LIM H S.Fault-hamiltonicity of hypercube-like interconnection networks[C]//Proc.of IEEE International Parallel and Distributed Processing Symposium.Denver,2005. https://doi.org/10.1109/ IPDPS.2005.223.