摘要 | 深部岩石处于高地应力及高温环境中, 使得深部资源开采面临很大挑战, 因此研究高温作用下岩石三轴力学行为具有重要意义。本文综合采用室内试验与数值模拟方法, 分析了实时温度和围压对砂岩强度及破坏特征的影响, 揭示了岩石热裂纹演化规律。首先, 对砂岩试样进行了不同实时温度作用三轴压缩试验, 获得了温度和围压对砂岩试样力学特性的影响规律。其次, 采用三维颗粒流程序 (PFC3D) 构建了砂岩三维数值模型, 通过与常温条件下三轴试验结果对比, 标定了一组能够反映砂岩力学特性的细观参数, 在此基础上开展了砂岩实时高温三轴压缩数值模拟, 模拟结果与室内试验结果相吻合。数值模拟结果表明, 当温度不超过150℃时, 砂岩试样内无微裂纹产生, 峰值强度变化不明显; 当温度超过150℃后, 砂岩试样内开始萌生微裂纹, 低围压条件下峰值强度随温度升高而降低, 高围压致微裂纹的闭合降低了温度对砂岩强度的弱化作用。砂岩破裂形态受温度和围压共同作用, 低围压下高温砂岩呈轴向劈裂破坏, 高围压下呈剪切破坏。 |
Abstract | Deep rocks are in high geostress and high temperature environment, which makes the exploitation of deep resources face great challenges, so it is of great significance to study the triaxial mechanical behaviour of rocks under high temperature. This paper comprehensively adopts indoor test and numerical simulation methods to analyze the influence of real-time temperature and peripheral pressure on the strength and damage characteristics of sandstone, and reveals the law of rock thermal crack evolution. Firstly, triaxial compression tests on sandstone with different real-time temperatures were conducted and the influences of temperature and confining pressure on the mechanical properties of sandstone were obtained. Secondly, a three-dimensional numerical model of sandstone was constructed using PFC3D, and a set of microscopic parameters reflecting the mechanical behavior. of sandstone were calibrated by comparing with triaxial compression results at room temperature, on the basis of which a numerical simulation on sandstone under realtime high temperature triaxial compression was carried out, and the numerical results were consistent with the laboratory experimental results. The numerical results show that no microcracks are generated in the specimen and the peak strength changes were not obvious when the temperature does not exceed 150℃; when the temperature exceeds 150℃, microcracks begin to sprout in the sandstone specimen. Under low confining pressure conditions, the peak strength of sandstone decreases with increasing temperature. The closure effect of high confining pressure on microcracks reduces the weakening effect of temperature on peak strength of sandstone. The fracture pattern of thermal sandstone is influenced by both temperature and peripheral pressure. The thermal sandstone exhibits axial splitting failure under low confining pressure, and shear failure under high confining pressure. |
DOI | 10.48014/bcce.20231024002 |
文章类型 | 研究性论文 |
收稿日期 | 2023-10-24 |
接收日期 | 2023-11-19 |
出版日期 | 2023-12-28 |
关键词 | 岩石力学, 实时高温, 峰值强度, 微裂纹, 颗粒流 |
Keywords | Rock mechanics, real-time temperature, peak strength, micro cracks, PFC3D |
作者 | 黄彦华1,2, 杨圣奇1,2,*, 田文岭1,2 |
Author | HUANG Yanhua1,2, YANG Shengqi1,2,*, TIAN Wenling1,2 |
所在单位 | 1. 中国矿业大学 力学与土木工程学院, 徐州 221116 2. 中国矿业大学 深部岩土力学与地下工程国家重点实验室, 徐州 221116 |
Company | 1. School of Mechanics and Civil Engineering, China University of Mining and Technology, Xuzhou 221116, China 2. State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Xuzhou 221116, China |
浏览量 | 501 |
下载量 | 180 |
基金项目 | 江苏省自然科学基金项目(BK20221547)资助 |
参考文献 | [1] 谢和平. 深部岩体力学与开采理论研究进展[J]. 煤炭学报, 2019, 44(5): 1283-1305. https://doi.org/10.13225/j.cnki.jccs.2019.6038 [2] 何满潮, 郭平业. 深部岩体热力学效应及温控对策[J]. 岩石力学与工程学报, 2013, 32(12): 2377-2393. [3] 李根生, 武晓光, 宋先知, 等. 干热岩地热资源开采技术现状与挑战[J]. 石油科学通报, 2022, 7(3): 343-364. https://doi.org/10.3969/j.issn.2096-1693.2022.03.031 [4] Peng J, Rong G, Cai M, et al. Comparison of mechanical properties of undamaged and thermal-damaged coarse marbles under triaxial compression[J]. International Journal of Rock Mechanics & Mining Sciences, 2016, 100(83): 135-139. https://doi.org/10.1016/j.ijrmms.2015.12.016 [5] 吴刚, 翟松韬, 李玉寿, 等. 高温下大理岩受压破坏的细观结构分析[J]. 岩石力学与工程学报, 2012, 31(S2): 3579-3585. [6] Yin T B, Shu R H, Li X B, et al. Comparison of mechanical properties in high temperature and thermal treatment granite[J]. Transactions of Nonferrous Metals Society of China, 2016, 26(7): 1926-1937. https://doi.org/10.1016/S1003-6326(16)64311-X [7] Chester F M, Higgs N G. Multimechanism friction constitutive model for ultrafine quartz gouge at hypocentral conditions[J]. Journal of Geophysical Research Atmospheres, 1992, 97(B2): 1859-1870. https://doi.org/10.1029/91JB02349 [8] Zhang P, Mishra B, Heasley K A. Experimental investigation on the influence of high pressure and high temperature on the mechanical properties of deep reservoir rocks[J]. Rock Mechanics & Rock Engineering, 2015, 48(6): 2197-2211. https://doi.org/10.1007/s00603-015-0718-x [9] Kumari W G P, Ranjith P G, Perera M S A, et al. Mechanical behaviour of Australian Strathbogie granite under in-situ stress and temperature conditions: An application to geothermal energy extraction[J]. Geothermics, 2017, 65: 44-59. https://doi.org/10.1016/j.geothermics.2016.07.002 [10] 蒋海昆, 张流. 不同温度条件下花岗岩变形破坏及声发射时序特征[J]. 地震, 2000, 20(3): 87-94. https://doi.org/10.3969/j.issn.1000-3274.2000.03.014 [11] 李利峰, 邓慧琳, 张晓虎, 等. 加载速率对实时高温花岗岩三轴力学特性影响的实验研究[J]. 科学技术与工程, 2020, 20(16): 6397-6403. [12] Wang Y T, Zhou X P. Peridynamic simulation of thermal failure behaviors in rocks subjected to heating from boreholes[J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 117: 31-48. https://doi.org/10.1016/j.ijrmms.2019.03.007 [13] 张伟, 曲占庆, 郭天魁, 等. 热应力影响下干热岩水压致裂数值模拟[J]. 岩土力学, 2019, 40(5): 2001-2008. https://doi.org/10.16285/j.rsm.2018.0422 [14] Yu Q L, Ranjith P G, Liu H Y, et al. A mesostructurebased damage model for thermal cracking analysis and application in granite at elevated temperatures[J]. Rock Mechanics and Rock Engineering, 2015, 48(6): 2263-2282. https://doi.org/10.1007/s00603-014-0679-5 [15] Yang Z, Yang S Q, Tian W L. Peridynamic simulation of fracture mechanical behaviour of granite specimen under real-time temperature and post-temperature treatments[J]. International Journal of Rock Mechanics and Mining Sciences 2021, 138: 104573. https://doi.org/10.1016/j.ijrmms.2020.104573 [16] 杨敏, 杨磊, 李玮枢, 等. 循环升温-水冷作用下花岗岩 的力学特征与破坏模式[J]. 科学技术与工程, 2021, 21(32): 3828-13836. [17] 孙浩, 苏楠, 金爱兵, 等. 温度对不同尺寸砂岩巴西劈裂特性影响[J]. 工程科学学报, 2022, 44(1): 26-38. https://doi.org/10.13374/j.issn2095-9389.2021.07.26.001 [18] 田文岭, 杨圣奇, 黄彦华, 等. 花岗岩高温高压损伤破裂细观机制模拟研究[J]. 岩石力学与工程学报, 2022, 41(9): 1810-1819. https://doi.org/10.13722/j.cnki.jrme.2021.1260 [19] 中华人民共和国住房与城乡建设部, 中华人民共和国国家质量监督检验检疫总局. 工程岩体试验方法标准GB/T 50266-2013[M]. 北京: 中国计划出版社, 2013. [20] Huang Y H, Yang S Q. Mechanical and acoustic behaviors of brine-saturated sandstone at elevated temperature[ J]. Geomechanics and Engineering, 2019, 17(2): 215-225. https://doi.org/10.12989/gae.2019.17.2.215 [21] Yang B, Jiao Y, Lei S. A study on the effects of microparameters on macroproperties for specimens created by bonded particles[J]. Engineering Computations, 2006, 23(6): 607-631. https://doi.org/10.1108/02644400610680333 [22] Fakhimi A, Villegas T. Application of dimensional analysis in calibration of a discrete element model for rock deformation and fracture[J]. Rock Mechanics and Rock Engineering, 2007, 40(2): 193-211. https://doi.org/10.1007/s00603-006-0095-6 [23] Huang Y H, Yang S Q, Tian W L. Crack coalescence behavior of sandstone specimen containing two pre-existing flaws under different confining pressures[J]. Theoretical and Applied Fracture Mechanics, 2019, 99: 118-130. https://doi.org/10.1016/j.tafmec.2018.11.013 [24] Itasca Consulting Group Inc. PFC3D manual, version 4. 0 [R]. Minneapolis, Minnesota, 2008. [25] Fei Y. Mineral physics and crystallography: A handbook of physical constants[M]. AGU, 1995: 29-44. https://doi.org/10.1029/RF002 [26] Zhao Z. Thermal influence on mechanical properties of granite: a microcracking perspective[J]. Rock Mechanicsand Rock Engineering, 2016, 49(3): 747-762. https://doi.org/10.1007/s00603-015-0767-1 [27] Yang S Q, Huang Y H, Tian W L. Influence of watersaturation and real-time testing temperature on mechanicalbehavior of sandstone under conventional triaxialcompression[J]. Rock Mechanics and Rock Engineering, 2021, 54: 4355-4367. https://doi.org/10.1007/s00603-021-02478-z [28] Wong T, Baud P, Klein E. Localized failure modes in acompactant porous rock[J]. Geophysical Research Letters, 2001, 28(13): 2521-2524. https://doi.org/10.1029/2001GL012960 [29] Wasantha P L P, Ranjith P G. Water-weakening behaviorof Hawkesbury sandstone in brittle regime[J]. EngineeringGeology, 2014, 178: 91-101. https://doi.org/10.1016/j.enggeo.2014.05.015 [30] Lu G M, Feng X T, Li Y H, et al. Influence of microwavetreatment on mechanical behaviour of compactbasalts under different confining pressures[J]. Journalof Rock Mechanics and Geotechnical Engineering, 2020, 12: 213-222. https://doi.org/10.1016/j.jrmge.2019.06.009 |
引用本文 | 黄彦华, 杨圣奇, 田文岭. 实时高温三轴压缩下砂岩强度及破裂特征研究[J]. 中国土木工程通报, 2023, 1(3): 18-27. |
Citation | HUANG Yanhua, YANG Shengqi, TIAN Wenling. Study on the strength and failure behaviors of sandstone specimens at elevated temperature under triaxial compression[J]. Bulletin of Chinese Civil Engineering, 2023, 1(3): 18-27. |