2025年6月27日 星期五
盾构下穿综合管廊工程施工影响规律分析
Analysis of Construction Impact Patterns of Shield Tunneling Beneath Utility Corridor
摘要

由于地质条件的限制及地下空间的综合开发利用, 地下工程有时不可避免地产生近距离交叉, 而盾构下穿综合管廊是此类工程问题中常见的问题之一。因此, 本文采用FLAC3D对盾构下穿地下综合管廊开展了开挖过程中管廊位移及地层沉降分析。结果表明整个盾构过程, 位移及应力最大的位置均在Z方向上 (竖直方向) 。在位移变化上, Z方向不同区域存在隆起和下沉两种位移形态, 部分区域最大可达到3. 34mm和2. 76mm, 而在X和Y方向上的位移均在0. 5mm左右。在应力变化上Z方向最大应力为2. 0MPa, 而X和Y方向上最大应力为0. 25MPa和0. 5MPa, 应力集中系数分别为1和2左右。在截污管道下穿综合管廊过程, 风险区域主要包括上部顶板中部, 两舱室底板和隔墙四个区域。上部顶板下沉量最大在管廊交叉影响范围中部 (X=47m) 位置, 管廊右舱和左舱底板隆起量最大处在交叉影响范围后部 (X=51m) , 且左舱隆起量大于右舱。管廊应力集中区域在两舱室隔墙处在交叉影响范围前部位置 (X=43m) , 因此, 在实际盾构过程中要对该区域重点监测其位移及应力的变化, 必要时应采取切底和加强支护措施, 以保持管廊结构稳定。

Abstract

Due to the limitation of geological conditions and comprehensive development and utilization of underground space, underground engineering sometimes inevitably involves close spatial intersection, with shield tunneling beneath utility tunnels being a common challenge in such engineering projects. This study utilizes the numerical simulation software FLAC3D to analyze the displacement of the pipe corridor and the ground settlement during shield tunneling beneath an underground utility tunnel. The results indicate that during the entire shield tunneling process, the peak values of displacement and stress occur in the Z direction ( vertical direction) . In terms of displacement changes, the Z direction exhibits two types of displacement patterns: uplift and settlement. The maximum displacement in certain regions reaches 3. 34 mm and 2. 76 mm, while the displacement in the X and Y directions remains about 0. 5 mm. In terms of stress changes, the maximum stress in the Z direction is 2. 0 MPa, while in the X and Y directions, the maximum stress is 0. 25 MPa and 0. 5 MPa, respectively, with the stress concentration coefficient of approximately 1 and 2. During the process of sewage interception pipeline crossing the utility tunnel, the key risk areas mainly include the central part of the upper slab, the bottoms of the two compartments, and the partition walls. The maximum subsidence of the upper slab is in the middle of the pipe trench intersection influence range (X = 47 m) , and the maximum uplift of the right and left compartment bottoms is in the rear of the intersection influence range (X = 51 m) , and the left compartment uplift is greater than the right compartment. The stress concentration area of the pipe trench is in the front part of the partition walls in the intersection influence range (X = 43 m) . To ensure the structural integrity of the utility tunnel, it is necessary to monitor the displacement and stress changes in this area during the actual shield tunneling process and adopt foundation cutting and reinforcement measures when necessary.  

DOI10.48014/bcce.20241118002
文章类型研究性论文
收稿日期2024-11-18
接收日期2024-12-14
出版日期2024-12-28
关键词盾构施工, 地下综合管廊, 沉降监测, 数值模拟, 变形规律
KeywordsShield construction, underground utility tunnel, settlement monitoring, numerical simulation, deformation patterns
作者李路
AuthorLI Lu
所在单位徐州地铁基础设施工程有限公司, 徐州 221000
CompanyXuzhou Metro Infrastructure Engineering Co. , Ltd, Xuzhou 221000, China
浏览量149
下载量35
参考文献[1] 张瑾, 王旭春, 刘涛. 下穿隧道对既有地铁线路及周边环境影响研究[J]. 地下空间与工程学报, 2012, 8(05): 1088-1093.
[2] 于宁, 朱合华. 盾构隧道施工地表变形分析与三维有限元模拟[J]. 岩土力学, 2004(08): 1330-1334.
https://doi.org/10.3969/j.issn.1000-7598.2004.08.034
[3] 刘杰, 王文建. 盾构隧道下穿铁路路基应对措施及安全评估[J]. 路基工程, 2020(02): 169-174.
https://doi.org/10.13379/j.issn.1003-8825.2020.02.33
[4] 史晓涛. 盾构下穿工程沉降控制数值研究[J]. 科学技术创新, 2020(30): 147-149.
https://doi.org/10.3969/j.issn.1673-1328.2020.30.067
[5] 方继安, 于海峰, 葛忻声. 盾构隧道施工对邻近管线的沉降影响分析[J]. 建筑施工, 2020, 42(09): 1802-1804.
https://doi.org/10.14144/j.cnki.jzsg.2020.09.067
[6] 李京承, 余航飞. 盾构隧道下穿既有隧道施工影响的数值模拟[J]. 水利与建筑工程学报, 2020, 18(05): 109-114.
https://doi.org/10.3969/j.issn.1672-1144.2020.05.019
[7] 张文超, 伍肖, 程涛. 地铁隧道盾构下穿既有隧道的数值模拟[J]. 路基工程, 2017(01): 146-150.
https://doi.org/10.13379/j.issn.1003-8825.2017.01.30.
[8] 赵红光. 长江漫滩地盾构下穿既有地铁隧道沉降控制[J]. 四川建材, 2022, 48(06): 159-161+163.
https://doi.org/10.3969/j.issn.1672-4011.2022.06.082
[9] 陈向阳, 张雯超, 赵西亭, 等. 盾构下穿施工对既有盾构隧道结构的影响研究[J]. 人民长江, 2021, 52(12): 126-132.
https://doi.org/10.16232/j.cnki.1001-4179.2021.12.019.
[10] 肖自卫, 张盛红. 盾构下穿对既有地铁隧道的影响规律数值模拟[J]. 山西建筑, 2021, 47(13): 130-134.
https://doi.org/10.13719/j.cnki.1009-6825.2021.13.047.
引用本文李路. 盾构下穿综合管廊工程施工影响规律分析[J]. 中国土木工程通报, 2024, 2(4): 25-32.
CitationLI Lu. Analysis of construction impact patterns of shield tunneling beneath utility corridor[J]. Bulletinf of Chinese Civil Engineering 2024, 2(4): 25-32.