2024年5月4日 星期六
基于零厚度粘聚力单元的降雨入渗下岩质边坡稳定性分析
Stability Analysis of Rock Slope under Rainfall Infiltration Based on A Zero-Thickness Cohesive Element
摘要

岩质边坡往往存在着大量节理、裂隙等过水通道, 短时强降雨或持续降雨条件下雨水大量进入坡体, 极易诱发岩质边坡发生滑坡灾害, 因此研究降雨入渗作用下岩质边坡的稳定性具有重要意义。本文以ABAQUS数值仿真平台为基础, 通过嵌入零厚度粘聚力单元实现降雨条件下岩质边坡变形破坏过程的连续-非连续模拟, 以矢量和法安全系数为衡量指标, 重点研究降雨强度、降雨时长和降雨入渗位置对边坡稳定性的影响。结果表明: 随着降雨强度和降雨时长的增大, 边坡体内裂隙深度逐渐变大, 边坡稳定性逐渐降低; 降雨入渗的初始位置距离坡肩越远, 降雨诱发的裂隙延伸长度就越短, 边坡稳定性越好。研究结果为降雨条件下岩质边坡工程治理提供参考。

Abstract

There are often a large number of joints, fissures and other water channels in rock slopes. Under the condition of short-term heavy rainfall or continuous rainfall, a large amount of rainwater enters the slope body, which can easily induce landslide disaster on rock slopes. Therefore, it is of great significance to study the stability of rock slope under the infiltration of rainfall. Based on the ABAQUS numerical simulation platform, this paper implements continuous-discontinuous simulation of the deformation and damage of rock slopes under rainfall conditions by embedding zero-thickness cohesive elements and focuses on the effects of rainfall intensity, rainfall duration and rainfall infiltration location on the slope stability using vector method safety factors as indicators. The results show that as the rainfall intensity and rainfall duration increase, the depth of fissures in the slope gradually becomes larger, and the stability of the slope gradually decreases. The farther the initial location of rainfall infiltration is from the shoulder of the slope, the shorter the rain-induced fissure extension length is and the better the stability of the slope is. The research results provide reference for the engineering treatment of rock slope under rainfall conditions.  

DOI10.48014/bcce.20220830001
文章类型研究性论文
收稿日期2022-08-31
接收日期2022-10-02
出版日期2023-06-28
关键词粘聚力单元, 矢量和法安全系数, 岩质边坡, 降雨, 数值模拟
KeywordsCohesive element, vector method safety factors, rock slope, rainfall, numerical simulation
作者翁磊1, 吴志军1,*, 马亮亮2
AuthorWENG Lei1, WU Zhijun1,*, MA Liangliang2
所在单位1. 武汉大学土木建筑工程学院, 武汉 430072
2. 中国电建集团中南勘测设计研究院有限公司, 长沙 410014
Company1. School of Civil Engineering, Wuhan University, Wuhan 430072, China
2. Powerchina Zhongnan Engineering Corporation Limited, Changsha 410041, China
浏览量339
下载量152
基金项目国家自然科学基金项目(42077246,52004182)资助。
参考文献[1] Senthilkumar V, Chandrasekaran S S, Maji V B. Rainfallinduced landslides: Case study of the Marappalam Landslide, Nilgiris District, Tamil Nadu, India[J]. International Journal of Geomechanics, 2018, 18(9): 05018006.
https://doi.org/10.1061/(ASCE)GM.1943-5622.0001218
[2] 王述红, 何坚, 杨天娇. 考虑降雨入渗的边坡稳定性数值分析[J]. 东北大学学报(自然科学版), 2018, 39(8): 1196-1200.
https://doi.org/10.12068/j.issn.1005-3026.2018.08.026
[3] 付建新, 宋卫东, 杜建华. 考虑二维降雨入渗的非饱和土边坡瞬态体积含水率分析[J]. 工程科学学报, 2015, 37(4): 407-413.
https://doi.org/10.13374/j.issn2095-9389.2015.04.002
[4] Mukhlisin M, Baidillah M R, Ibrahim A, et al. Effect of soil hydraulic properties model on slope stability analysis based on strength reduction method[J]. Journal of the Geological Society of India, 2014, 83(5): 586-594.
https://doi.org/10.1007/s12594-014-0087-1
[5] 刘金龙, 栾茂田, 王吉利, 等. 降雨条件下土坡饱和-非饱和渗流及稳定性分析[J]. 岩土力学, 2006, 27(S1): 103-107.
https://doi.org/10.16285/j.rsm.2006.s1.058
[6] 林姗, 郭昱葵, 孙冠华, 等. 边坡稳定性分析的虚单元强度折减法[J]. 岩石力学与工程学报, 2019, 38(S02): 3429-3438.
https://doi.org/10.13722/j.cnki.jrme.2019.0030
[7] 王学滨, 芦伟男, 钱帅帅, 等. 静水压力条件下开挖直径及卸荷时间对巷道围岩变形-开裂影响的连续-非连续方法模拟[J]. 应用力学学报, 2020, 37(04): 1841- 1848, 1880.
https://doi.org/10.11776/cjam.37.04.B023
[8] Goodman R E, Taylor R L, Brekke T L. A model for the mechanics of jointed rock[J]. Journal of The Soil Mechanics and Foundations Division, 1968, 94(SM3): 637-659.
https://doi.org/10.1061/JSFEAQ.0001133
[9] Moёs N, Belytschko T. Extended finite element method for cohesive crack growth[J]. Engineering Fracture Mechanics, 2002, 69(7): 813-833.
https://doi.org/10.1016/S0013-7944(01)00128-X
[10] Strouboulis T, Babuška I, Copps K. The design and analysis of the generalized finite element method[J]. Computer Methods in Applied Mechanics and Engineering, 2000, 181(1): 43-69.
https://doi.org/10.1016/S0045-7825(99)00072-9
[11] Wu Z, Zhang D, Wang S, et al. Dynamic-response characteristics and deformation evolution of loess slopes under seismic loads[J]. Engineering Geology, 2020, 267: 105507.
https://doi.org/10.1016/j.enggeo.2020.105507
[12] 张国新, 雷峥琦, 程恒. 水对岩质边坡倾倒变形影响的DDA模拟[J]. 中国水利水电科学研究院学报, 2016, 14(03): 161-170.
https://doi.org/10.13244/j.cnki.jiwhr.2016.03.001
[13] 蒋明镜, 江华利, 廖优斌, 等. 不同形式节理的岩质边坡失稳演化离散元分析[J]. 同济大学学报(自然科学版), 2019, 47(02): 167-174.
https://doi.org/10.11908/j.issn.0253-374x.2019.02.002
[14] 李祥龙, 唐辉明, 胡巍. 层面参数对顺层岩质边坡地震动力破坏过程影响研究[J]. 岩土工程学报, 2014, 36(03): 466-473.
https://doi.org/10.11779/CJGE201403009
[15] Fakhimi A, Wan F. Discrete element modeling of the process zone shape in mode I fracture at peak load and in post-peak regime[J]. International Journal of Rock Mechanics and Mining Sciences, 2016, 85: 119-128.
https://doi.org/10.1016/j.ijrmms.2016.03.014
[16] 沈华章, 郭明伟, 王水林, 等. 基于离散元的边坡矢量和稳定分析方法研究[J]. 岩土力学, 2016, 37(02): 592-600.
https://doi.org/10.16285/j.rsm.2016.02.033
[17] 刘泉声, 邓鹏海, 毕晨, 等. 深部巷道软弱围岩破裂碎胀过程及锚喷-注浆加固FDEM数值模拟[J]. 岩土力学, 2019, 40(10): 4065-4083.
https://doi.org/10.16285/j.rsm.2018.1032
[18] 严成增. 模拟水压致裂的另一种二维FDEM-flow 方法[J]. 岩土力学, 2017, 38(06): 1789-1796.
https://doi.org/10.16285/j.rsm.2017.06.029
[19] Bicanic N, Munjiza A, Owen D R J, et al. From Continua to Discontinua-A Combined Finite Element/Discrete Element Modelling in Civil Engineering[C]. Interna-tional Conference on Computing in Civil and Structural Engineering, 1995: 1-13.
[20] Mahabadi O K, Lisjak A, Munjiza A, et al. New combined finite-discrete element numerical code for geomechanical applications[J]. International Journal of Geomechanics, 2012, 12(6): 676-688.
https://doi.org/10.1061/(ASCE)GM.1943-5622.0000216
[21] Zhang H H. Analysis of Crack Interaction Problem by the Numerical Manifold Method[J]. Advanced Materials Research, 2012, 446-449: 797-801.
https://doi.org/10.4028/www.scientific.net/AMR.446-449.797
[22] Yang Y, Zheng H. Direct Approach to treatment of contact in numerical manifold method[J]. International Journal of Geomechanics, 2016, 17: 4016012.
https://doi.org/10.1061/(ASCE)GM.1943-5622.0000714
[23] Alfano G. On the influence of the shape of the interface law on the application of cohesive zone models[J]. Composites Science & Technology, 2004, 66(6): 723-30.
https://doi.org/10.1016/j.compscitech.2004.12.024
[24] Camanho P P, Davila C G. Mixed-Mode Decohesion Finite Elements for the Simulation of Delamination in Composite Materials[R]. NASA/TM-2002-211737 2002.
[25] 甘亮. EGS-E水平巷道水力压裂与热交换数值模拟初步研究[D]. 武汉: 武汉大学, 2019.
[26] 郭明伟, 葛修润, 李春光, 等. 基于矢量和方法的边坡稳定性分析中整体下滑趋势方向的探讨[J]. 岩土工程学报, 2009, 31(4): 577-583.
https://doi.org/1000-4548(2009)04-0577-07
[27] 郑颖人, 赵尚毅. 有限元强度折减法在土坡与岩坡中的应用[J]. 岩石力学与工程学报, 2004, 23(19): 3381-3388.
https://doi.org/1000-6915(2004)19-3381-08
[29] 郑文博, 庄晓莹, 李耀基, 等. 基于流形方法和图论算法的岩/土质边坡稳定性分析[J]. 岩土工程学报, 2013, 35(11): 2045-2052.
https://dx.doi.org/10.3969/j.issn.1000-4548(2013)11-2045-08
[30] 丰定祥, 吴家秀, 葛修润. 边坡稳定性分析中几个问题的探讨[J]. 岩土工程学报, 1990, 12(3): 1-9.
https://dx.doi.org/10.19345/j.cnki.1671-0037.2013.06.057
[31] 葛修润. 岩石疲劳破坏的变形控制律、岩土力学试验的实时X射线CT扫描和边坡坝基抗滑稳定分析的新方法[J]. 岩土工程学报, 2008, 30(1): 1-20.
https://dx.doi.org/1000-4548(2008)01-0001-20
[32] 沈华章. 岩土应变软化分析及其在边坡工程中的应用 [D]. 北京: 中国科学院大学, 2016.
[33] Koyama T, Jing L. Effects of model scale and particle size on micro-mechanical properties and failure processes of rocks-A particle mechanics approach[J]. Engineering Analysis with Boundary Elements, 2007, 31(5): 458-472.
https://doi.org/10.1016/j.enganabound.2006.11.009
[34] Zheng W, Zhuang X, Tannant D D, et al. Unified continuum/ discontinuum modeling framework for slope stability assessment[J]. Engineering Geology, 2014, 179: 90-101.
https://doi.org/10.1016/j.enggeo.2014.06.014
[35] Ma G, Wei Z, Chang X L. Modeling the particle breakage of rockfill materials with the cohesive crack model[J]. Computers and Geotechnics, 2014, 61: 132-143.
https://doi.org/10.1016/j.compgeo.2014.05.006
[36] 马云峰. 基于ABAQUS 岩土工程中地应力平衡的探讨[J]. 科技与创新, 2014(8): 61-61.
https://doi.org/10.15913/j.cnki.kjycx.2014.08.006
[37] 刘爱华, 杨清, 吴均平. ANSYS三维地应力场数值模拟方法应用研究[J]. 地质力学学报, 2013, 19(2): 133-142.
https://doi.org/1006-6616(2013)02-0133-10
[38] 代汝林, 李忠芳, 王姣. 基于ABAQUS的初始地应力平衡方法研究[J]. 重庆工商大学学报(自然科学版), 2012, 29(9): 76-81.
https://doi.org/1672-058X(2012)09-0076-06
引用本文翁磊, 吴志军, 马亮亮. 基于零厚度粘聚力单元的降雨入渗下岩质边坡稳定性分析[J]. 中国土木工程通报, 2023, 1(1): 1-14.
CitationWENG Lei, WU Zhijun, MA Liangliang. Stability analysis of rock slope under rainfall infiltration based on a zero-thickness cohesive element[J]. Bulletin of Chinese Civil Engineering, 2023, 1(1): 1-14.