参考文献
[1] Senthilkumar V, Chandrasekaran S S, Maji V B. Rainfallinduced landslides: Case study of the Marappalam Landslide, Nilgiris District, Tamil Nadu, India[J]. International Journal of Geomechanics, 2018, 18(9): 05018006. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001218 [2] 王述红, 何坚, 杨天娇. 考虑降雨入渗的边坡稳定性数值分析[J]. 东北大学学报(自然科学版), 2018, 39(8): 1196-1200. https://doi.org/10.12068/j.issn.1005-3026.2018.08.026 [3] 付建新, 宋卫东, 杜建华. 考虑二维降雨入渗的非饱和土边坡瞬态体积含水率分析[J]. 工程科学学报, 2015, 37(4): 407-413. https://doi.org/10.13374/j.issn2095-9389.2015.04.002 [4] Mukhlisin M, Baidillah M R, Ibrahim A, et al. Effect of soil hydraulic properties model on slope stability analysis based on strength reduction method[J]. Journal of the Geological Society of India, 2014, 83(5): 586-594. https://doi.org/10.1007/s12594-014-0087-1 [5] 刘金龙, 栾茂田, 王吉利, 等. 降雨条件下土坡饱和-非饱和渗流及稳定性分析[J]. 岩土力学, 2006, 27(S1): 103-107. https://doi.org/10.16285/j.rsm.2006.s1.058 [6] 林姗, 郭昱葵, 孙冠华, 等. 边坡稳定性分析的虚单元强度折减法[J]. 岩石力学与工程学报, 2019, 38(S02): 3429-3438. https://doi.org/10.13722/j.cnki.jrme.2019.0030 [7] 王学滨, 芦伟男, 钱帅帅, 等. 静水压力条件下开挖直径及卸荷时间对巷道围岩变形-开裂影响的连续-非连续方法模拟[J]. 应用力学学报, 2020, 37(04): 1841- 1848, 1880. https://doi.org/10.11776/cjam.37.04.B023 [8] Goodman R E, Taylor R L, Brekke T L. A model for the mechanics of jointed rock[J]. Journal of The Soil Mechanics and Foundations Division, 1968, 94(SM3): 637-659. https://doi.org/10.1061/JSFEAQ.0001133 [9] Moёs N, Belytschko T. Extended finite element method for cohesive crack growth[J]. Engineering Fracture Mechanics, 2002, 69(7): 813-833. https://doi.org/10.1016/S0013-7944(01)00128-X [10] Strouboulis T, Babuška I, Copps K. The design and analysis of the generalized finite element method[J]. Computer Methods in Applied Mechanics and Engineering, 2000, 181(1): 43-69. https://doi.org/10.1016/S0045-7825(99)00072-9 [11] Wu Z, Zhang D, Wang S, et al. Dynamic-response characteristics and deformation evolution of loess slopes under seismic loads[J]. Engineering Geology, 2020, 267: 105507. https://doi.org/10.1016/j.enggeo.2020.105507 [12] 张国新, 雷峥琦, 程恒. 水对岩质边坡倾倒变形影响的DDA模拟[J]. 中国水利水电科学研究院学报, 2016, 14(03): 161-170. https://doi.org/10.13244/j.cnki.jiwhr.2016.03.001 [13] 蒋明镜, 江华利, 廖优斌, 等. 不同形式节理的岩质边坡失稳演化离散元分析[J]. 同济大学学报(自然科学版), 2019, 47(02): 167-174. https://doi.org/10.11908/j.issn.0253-374x.2019.02.002 [14] 李祥龙, 唐辉明, 胡巍. 层面参数对顺层岩质边坡地震动力破坏过程影响研究[J]. 岩土工程学报, 2014, 36(03): 466-473. https://doi.org/10.11779/CJGE201403009 [15] Fakhimi A, Wan F. Discrete element modeling of the process zone shape in mode I fracture at peak load and in post-peak regime[J]. International Journal of Rock Mechanics and Mining Sciences, 2016, 85: 119-128. https://doi.org/10.1016/j.ijrmms.2016.03.014 [16] 沈华章, 郭明伟, 王水林, 等. 基于离散元的边坡矢量和稳定分析方法研究[J]. 岩土力学, 2016, 37(02): 592-600. https://doi.org/10.16285/j.rsm.2016.02.033 [17] 刘泉声, 邓鹏海, 毕晨, 等. 深部巷道软弱围岩破裂碎胀过程及锚喷-注浆加固FDEM数值模拟[J]. 岩土力学, 2019, 40(10): 4065-4083. https://doi.org/10.16285/j.rsm.2018.1032 [18] 严成增. 模拟水压致裂的另一种二维FDEM-flow 方法[J]. 岩土力学, 2017, 38(06): 1789-1796. https://doi.org/10.16285/j.rsm.2017.06.029 [19] Bicanic N, Munjiza A, Owen D R J, et al. From Continua to Discontinua-A Combined Finite Element/Discrete Element Modelling in Civil Engineering[C]. Interna-tional Conference on Computing in Civil and Structural Engineering, 1995: 1-13. [20] Mahabadi O K, Lisjak A, Munjiza A, et al. New combined finite-discrete element numerical code for geomechanical applications[J]. International Journal of Geomechanics, 2012, 12(6): 676-688. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000216 [21] Zhang H H. Analysis of Crack Interaction Problem by the Numerical Manifold Method[J]. Advanced Materials Research, 2012, 446-449: 797-801. https://doi.org/10.4028/www.scientific.net/AMR.446-449.797 [22] Yang Y, Zheng H. Direct Approach to treatment of contact in numerical manifold method[J]. International Journal of Geomechanics, 2016, 17: 4016012. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000714 [23] Alfano G. On the influence of the shape of the interface law on the application of cohesive zone models[J]. Composites Science & Technology, 2004, 66(6): 723-30. https://doi.org/10.1016/j.compscitech.2004.12.024 [24] Camanho P P, Davila C G. Mixed-Mode Decohesion Finite Elements for the Simulation of Delamination in Composite Materials[R]. NASA/TM-2002-211737 2002. [25] 甘亮. EGS-E水平巷道水力压裂与热交换数值模拟初步研究[D]. 武汉: 武汉大学, 2019. [26] 郭明伟, 葛修润, 李春光, 等. 基于矢量和方法的边坡稳定性分析中整体下滑趋势方向的探讨[J]. 岩土工程学报, 2009, 31(4): 577-583. https://doi.org/1000-4548(2009)04-0577-07 [27] 郑颖人, 赵尚毅. 有限元强度折减法在土坡与岩坡中的应用[J]. 岩石力学与工程学报, 2004, 23(19): 3381-3388. https://doi.org/1000-6915(2004)19-3381-08 [29] 郑文博, 庄晓莹, 李耀基, 等. 基于流形方法和图论算法的岩/土质边坡稳定性分析[J]. 岩土工程学报, 2013, 35(11): 2045-2052. https://dx.doi.org/10.3969/j.issn.1000-4548(2013)11-2045-08 [30] 丰定祥, 吴家秀, 葛修润. 边坡稳定性分析中几个问题的探讨[J]. 岩土工程学报, 1990, 12(3): 1-9. https://dx.doi.org/10.19345/j.cnki.1671-0037.2013.06.057 [31] 葛修润. 岩石疲劳破坏的变形控制律、岩土力学试验的实时X射线CT扫描和边坡坝基抗滑稳定分析的新方法[J]. 岩土工程学报, 2008, 30(1): 1-20. https://dx.doi.org/1000-4548(2008)01-0001-20 [32] 沈华章. 岩土应变软化分析及其在边坡工程中的应用 [D]. 北京: 中国科学院大学, 2016. [33] Koyama T, Jing L. Effects of model scale and particle size on micro-mechanical properties and failure processes of rocks-A particle mechanics approach[J]. Engineering Analysis with Boundary Elements, 2007, 31(5): 458-472. https://doi.org/10.1016/j.enganabound.2006.11.009 [34] Zheng W, Zhuang X, Tannant D D, et al. Unified continuum/ discontinuum modeling framework for slope stability assessment[J]. Engineering Geology, 2014, 179: 90-101. https://doi.org/10.1016/j.enggeo.2014.06.014 [35] Ma G, Wei Z, Chang X L. Modeling the particle breakage of rockfill materials with the cohesive crack model[J]. Computers and Geotechnics, 2014, 61: 132-143. https://doi.org/10.1016/j.compgeo.2014.05.006 [36] 马云峰. 基于ABAQUS 岩土工程中地应力平衡的探讨[J]. 科技与创新, 2014(8): 61-61. https://doi.org/10.15913/j.cnki.kjycx.2014.08.006 [37] 刘爱华, 杨清, 吴均平. ANSYS三维地应力场数值模拟方法应用研究[J]. 地质力学学报, 2013, 19(2): 133-142. https://doi.org/1006-6616(2013)02-0133-10 [38] 代汝林, 李忠芳, 王姣. 基于ABAQUS的初始地应力平衡方法研究[J]. 重庆工商大学学报(自然科学版), 2012, 29(9): 76-81. https://doi.org/1672-058X(2012)09-0076-06