参考文献
[1] Korshunova I, Shi W, Dambre J, et al. Fast face-swap using convolutional neural networks[C]. In Proceedings of the IEEE international conference on computer vision. 2017: 3677-3685. [2] Deepfakes. 2019. https://github.com/deepfakes/faceswap [3] Liu K, Perov I, Gao D, et al. Deepfacelab: Integrated, flexible and extensible face-swapping framework[J]. Pattern Recognition. 2023, 141: 1-12. https://doi.org/10.1016/j.patcog.2023.109628 [4] Goodfellow I, Pouget-Abadie J, Mirza M, et al. Generative adversarial nets[J]. In Proceedings of the Advances in neural information processing systems, 2014, 27: 139-144. https://doi.org/10.1145/3422622 [5] Mirza M, Osindero S. Conditional generative adversarial nets[J]. arXiv preprint arXiv: 1411. 1784, 2014. [6] Li L, Bao J, Yang H, et al. Faceshifter: Towards high fidelity and occlusion aware face swapping[J]. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020: 5073-5082. [7] Ho J, Jain A, Abbeel P. Denoising diffusion probabilistic models[J]. In Proceedings of the Advances in neural information processing systems, 2020, 33: 6840-6851. [8] Rombach R, Blattmann A, Lorenz D, et al. High-resolution image synthesis with latent diffusion models[C]. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2022: 10684-10695. https://doi.org/10.1109/CVPR52688.2022.01042 [9] Zhao W, Rao Y, Shi W, et al. DiffSwap: High-Fidel-ity and Controllable Face Swapping via 3D-Aware Masked Diffusion[C]. In Proceedings of the IEEE/C-VF Conference on Computer Vision and Pattern Rec-ognition. 2023: 8568-8577. https://doi.org/10.1109/CVPR52729.2023.00828 [10] Agarwal S, Farid H, Gu Y, et al. Protecting World Leaders Against Deep Fakes[C]. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 2019: 38-45. https://doi.org/10.1073/pnas.2216035119 [11] Yang K, Chen K, Guo D, et al. Face2Face ρ: Real-Time High-Resolution One-Shot Face Reenactment[C]. In Proceedings of the European conference on computer vision. 2022: 55-71. [12] Blanz V, Vetter T. A morphable model for the synthesis of 3D faces[C]. In Proceedings of the Annual Conference on Computer Graphics and Interactive Techniques. 1999: 187-194. https://doi.org/10.1145/311535.311556 [13] Tuan Tran A, Hassner T, Masi I, et al. Regressing robust and discriminative 3D morphable models with a very deep neural network[C]. In Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: 5163-5172. https://doi.org/10.1109/CVPR.2017.163 [14] Blanz V, Scherbaum K, Vetter T, et al. Exchanging faces in images[C]. Computer Graphics Forum, 2004, 23(3): 669-676. https://doi.org/10.1111/j.1467-8659.2004.00799.x [15] Nirkin Y, Masi I, Tuan A T, et al. On face segmentation, face swapping, and face perception[C]. IEEE International Conference on Automatic Face & Gesture Recognition. 2018: 98-105. https://doi.org/10.1109/FG.2018.00024 [16] Wang Y, Chen X, Zhu J, et al. Hififace: 3d shape and semantic prior guided high fidelity face swapping[J]. In Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence. 2021: 1136-1142. https://doi.org/10.24963/ijcai.2021/157 [17] Li J, Li Z, Cao J, et al. Faceinpainter: High fidelity face adaptation to heterogeneous domains[C]. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2021: 5089-5098. https://doi.org/10.1109/CVPR46437.2021.00505 [18] Zhao W, Rao Y, Shi W, et al. DiffSwap: High-Fidel-ity and Controllable Face Swapping via 3D-Aware Masked Diffusion[C]. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2023: 8568-8577. https://doi.org/10.1109/CVPR52729.2023.00828 [19] Li Y, Ma C, Yan Y, et al. 3D-Aware Face Swapping [C]. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2023: 12705-12714. https://doi.org/10.1109/CVPR52729.2023.01222 [20] He K, Chen X, Xie S, et al. Masked autoencoders are scalable vision learners[C]. In Proceedings of the IEEE/CVF conference on computer vision and pattern re-cognition. 2022: 16000-16009. https://doi.org/10.1109/CVPR52688.2022.01553 [21] Zeng H, Zhang W, Fan C, et al. Flowface: Semantic flow-guided shape-aware face swapping[C]. In Proceedings of the AAAI Conference on Artificial Intelligence. 2023, 37(3): 3367-3375. https://doi.org/10.1609/aaai.v37i3.25444 [22] Arjovsky M, Chintala S, Bottou L. Wasserstein gene-rative adversarial networks[C]. In Proceedings of the International conference on machine learning. 2017: 214-223. https://doi.org/10.1145/3625820 [23] Odena A, Olah C, Shlens J. Conditional image synthesis with auxiliary classifier gans[C]. In Proceedings of the International conference on machine learning. 2017: 2642-2651. [24] Karras T, Laine S, Aila T. A style-based generator architecture for generative adversarial networks[C]. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2019: 4401-4410. https://doi.org/10.1109/TPAMI.2020.2970919 [25] Isola P, Zhu J Y, Zhou T, et al. Image-to-image translation with conditional adversarial networks[C]. In Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: 1125-1134. https://doi.org/10.1109/CVPR.2017.632 [26] Zhu J Y, Park T, Isola P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[ C]. In Proceedings of the IEEE international conference on computer vision. 2017: 2223-2232. https://doi.org/10.1109/ICCV.2017.244 [27] Karras T, Laine S, Aittala M, et al. Analyzing and im- proving the image quality of stylegan[C]. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2020: 8110-8119. https://doi.org/10.1109/CVPR42600.2020.00813 [28] Karras T, Aittala M, Laine S, et al. Alias-free generative adversarial networks[J]. In Proceedings of the Advances in Neural Information Processing Systems. 2021, 34: 852-863. [29] Ledig C, Theis L, Huszár F, et al. Photo-realistic single image super-resolution using a generative adversarial network [C]. In Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: 4681-4690. https://doi.org/10.1109/CVPR.2017.19 [30] Bulat A, Yang J, Tzimiropoulos G. To learn image super- resolution, use a gan to learn how to do image degradation first[C]. In Proceedings of the European conference on computer vision. 2018: 185-200. [31] Nirkin Y, Keller Y, Hassner T. Fsgan: Subject agnostic face swapping and reenactment[C]. In Proceedings of the IEEE/CVF international conference on computer vision. 2019: 7184-7193. https://doi.org/10.1109/ICCV.2019.00728 [32] Nirkin Y, Keller Y, Hassner T. FSGANv2: Improved subject agnostic face swapping and reenactment[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 45(1): 560-575. https://doi.org/10.1109/TPAMI.2022.3155571 [33] Chen R, Chen X, Ni B, et al. Simswap: An efficientframework for high fidelity face swapping[C]. In Proceedingsof the ACM International Conference on Multimedia. 2020: 2003-2011. https://doi.org/10.1145/3394171.3413630 [34] Chen X, Ni B, Liu Y, et al. SimSwap++: Towards Fasterand High-Quality Identity Swapping[J]. IEEETransactions on Pattern Analysis and Machine Intelligence, 2023, 46: 576-592. https://doi.org/10.1109/TPAMI.2023.3307156 [35] Choi J, Kim S, Jeong Y, et al. Ilvr: Conditioning methodfor denoising diffusion probabilistic models[J]. In Proceedingsof the IEEE/CVF International Conference onComputer Vision. 2021: 14347-14356. https://doi.org/10.1109/ICCV48922.2021.01410 [36] Lugmayr A, Danelljan M, Romero A, et al. Repaint: Inpaintingusing denoising diffusion probabilistic models[C]. In Proceedings of the IEEE/CVF Conference onComputer Vision and Pattern Recognition. 2022: 11461-11471. https://doi.org/10.1109/CVPR52688.2022.01117 [37] Meng C, Song Y, Song J, et al. Sdedit: Image synthesisand editing with stochastic differential equations[J]. InProceedings of the International Conference on LearningRepresentations. 2022. [38] Saharia C, Chan W, Chang H, et al. Palette: Image-toimagediffusion models[C]. In Proceedings of the ACMSIGGRAPH. 2022: 1-10. https://doi.org/10.1145/3528233.3530757 [39] Seo J, Lee G, Cho S, et al. Midms: Matching interleaveddiffusion models for exemplar-based image translation[C]. In Proceedings of the AAAI Conference on ArtificialIntelligence. 2023, 37(2): 2191-2199. https://doi.org/10.48448/qmj8-2718 [40] Kim K, Kim Y, Cho S, et al. Diffface: Diffusion-basedface swapping with facial guidance[J]. arXiv preprintarXiv: 2212. 13344, 2022. [41] Dhariwal P, Nichol A. Diffusion models beat gans onimage synthesis[J]. In Proceedings of the Advances inneural information processing systems. 2021, 34: 8780-8794. [42] Deng J, Guo J, Xue N, et al. Arcface: Additive angularmargin loss for deep face recognition[C]. In Proceedingsof the IEEE/CVF conference on computer visionand pattern recognition. 2019: 4690-4699. https://doi.org/10.1109/CVPR.2019.00482 [43] Zhu Y, Li Q, Wang J, et al. One shot face swapping onmegapixels[C]. In Proceedings of the IEEE/CVF conferenceon computer vision and pattern recognition. 2021: 4834-4844. https://doi.org/10.1109/CVPR46437.2021.00480 [44] Xu C, Zhang J, Hua M, et al. Region-aware face swapping[C]. In Proceedings of the IEEE/CVF Conferenceon Computer Vision and Pattern Recognition. 2022: 7632-7641. https://doi.org/10.1109/CVPR52688.2022.00748 [45] Xu Y, Deng B, Wang J, et al. High-resolution faceswapping via latent semantics disentanglement[C]. InProceedings of the IEEE/CVF Conference on ComputerVision and Pattern Recognition. 2022: 7642-7651. https://doi.org/10.1109/CVPR52688.2022.00749 [46] Tan M, Le Q. Efficientnet: Rethinking model scaling forconvolutional neural networks[C]//In Proceedings of International conference on machine learning. 2019: 6105-6114. [47] He K, Zhang X, Ren S, et al. Deep residual learnin-g forimage recognition[C]//In Proceedings of the IEEEconference on computer vision and pattern recog-nition. 2016: 770-778. [48] Zhao H, Zhou W, Chen D, et al. Multi-attentional deepfakedetection[C]. In Proceedings of the IEEE/CVFconference on computer vision and pattern recognition. 2021: 2185-2194. https://doi.org/10.1109/CVPR46437.2021.00222 [49] Chollet F. Xception: Deep learning with depthwise separableconvolutions[C]//In Proceedings of the IEEEconference on computer vision and pattern recognition. 2017: 1251-1258. [50] Shiohara K, Yamasaki T. Detecting deepfakes with selfblendedimages[C]. In Proceedings of the IEEE/CVFConference on Computer Vision and Pattern Recognition. 2022: 18720-18729. https://doi.org/10.1109/CVPR52688.2022.01816 [51] Huang B, Wang Z, Yang J, et al. Implicit identity drivendeepfake face swapping detection[C]//In Proceedingsof the IEEE/CVF Conference on Computer Vision andPattern Recognition. 2023: 4490-4499. [52] X. Zhang, S. Karaman and S. -F. Chang. Detecting andSimulating Artifacts in GAN Fake Images[C]//InProceedings of the IEEE International Workshop onInformation Forensics and Security. 2019: 1-6. [53] Dzanic T, Shah K, Witherden F. Fourier spectrum discrepanciesin deep network generated images[J]. InProceedings of the Advances in neural information processingsystems. 2020, 33: 3022-3032. https://doi.org/10.5555/3495724.3495978 [54] Giudice O, Guarnera L, Battiato S. Fighting deepfakesby detecting gan dct anomalies[J]. Journal of Imaging. 2021, 7(8): 128. https://doi.org/10.3390/jimaging7080128 [55] Qian Y, Yin G, Sheng L, et al. Thinking in frequency: Face forgery detection by mining frequency-aware clues[C]. In Proceedings of the European conference oncomputer vision. 2020: 86-103. [56] Li J, Xie H, Li J, et al. Frequency-aware discriminativefeature learning supervised by single-center loss forface forgery detection[C]. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2021: 6458-6467 https://doi.org/10.1109/CVPR46437.2021.00639 [57] Rossler A, Cozzolino D, Verdoliva L, et al. Faceforensics++: Learning to detect manipulated facial images[C]. In Proceedings of the IEEE/CVF internationalconference on computer vision. 2019: 1-11. [58] Li Y, Lyu S. Exposing deepfake videos by detecting facewarping artifacts[J]. arXiv preprint arXiv: 1811. 00656, 2018. [59] Dong X, Bao J, Chen D, et al. Protecting celebrities fromdeepfake with identity consistency transformer[C]. InProceedings of the IEEE/CVF Conference on ComputerVision and Pattern Recognition. 2022: 9468-9478. https://doi.org/10.1109/CVPR52688.2022.00925 [60] Matern F, Riess C, Stamminger M. Exploiting visual artifactsto expose deepfakes and face manipulations[C]. IEEE Winter Applications of Computer Vision Workshops. 2019: 83-92. https://doi.org/10.1109/WACVW.2019.00020 [61] Li L, Bao J, Zhang T, et al. Face x-ray for more generalface forgery detection[C]. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2020: 5001-5010. https://doi.org/10.1109/CVPR42600.2020.00505 [62] Güera D, Delp E J. Deepfake video detection using recurrentneural networks[C]. IEEE international conferenceon advanced video and signal based surveillance. 2018: 1-6. https://doi.org/10.1109/AVSS.2018.8639163 [63] Liy C M, InIctuOculi L. Exposing aicreated fake videosby detecting eye blinking[C]. In Proceedings of theIEEE International workshop on information forensicsand security. 2018: 11-13. [64] Sabir E, Cheng J, Jaiswal A, et al. Recurrent convolutionalstrategies for face manipulation detection in videos[J]. Interfaces. 2019, 3(1): 80-87. [65] Amerini I, Caldelli R. Exploiting prediction error inconsistenciesthrough LSTM-based classifiers to detectdeepfake videos[C]. In Proceedings of the 2020 ACMworkshop on information hiding and multimedia security. 2020: 97-102. https://doi.org/10.1145/3369412.3395070 [66] Masi I, Killekar A, Mascarenhas R M, et al. Twobranchrecurrent network for isolating deepfakes invideos[C]. In Proceedings of the European Conference on Computer Vision. 2020: 667-684. [67] Yu Y, Ni R, Zhao Y, et al. MSVT: Multiple SpatiotemporalViews Transformer for DeepFake Video Detection[J]. IEEE Transactions on Circuits and Systems forVideo Technology. 2023, 33(9): 4462-4471. [68] Haliassos A, Vougioukas K, Petridis S, et al. Lips dontlie: A generalisable and robust approach to face forgerydetection[C]. In Proceedings of the IEEE/CVF conferenceon computer vision and pattern recognition. 2021: 5039-5049. https://doi.org/10.1109/CVPR46437.2021.00500 [69] Haliassos A, Mira R, Petridis S, et al. Leveraging realtalking faces via self-supervision for robust forgery detection[C]. In Proceedings of the IEEE/CVF Conferenceon Computer Vision and Pattern Recognition. 2022: 14950-14962. [70] Yu Y, Liu X, Ni R, et al. PVASS-MDD: Predictive Visual-audio Alignment Self-supervision for MultimodalDeepfake Detection[J]. IEEE Transactions on Circuitsand Systems for Video Technology. 2023. https://doi.org/10.1109/TCSVT.2023.330989