参考文献
[1] Zang, A, Yoon, J. S. , Stephansson, O. , Heidbach, O. Fatigue hydraulic fracturing by cyclic reservoir treatment enhances permeability and reduces induced seismicity[J], Geophysical Journal International, Volume 195, Issue 2, November, 2013, Pages 1282-1287, https://doi.org/10.1093/gji/ggt301. [2] Gong F, Yan J, Wang Y, et al. Experimental study on energy evolution and storage performances of rock material under uniaxial cyclic compression[J]. Shock and Vibration, 2020, 2020: 1-14. https://doi.org/10.1155/2020/8842863. [3] Walsh J B. The effect of cracks on the uniaxial elastic compression of rocks[J]. Journal of Geophysical Research, 1965, 70(2): 399-411. https://doi.org/10.1029/JZ070i002p00399. [4] Kachanov M L. A microcrack model of rock inelasticity part I: Frictional sliding on microcracks[J]. Mechanics of Materials, 1982, 1(1): 19-27. https://doi.org/10.1016/0167-6636(82)90021-7. [5] Horii H, Nemat-Nasser S. Overall moduli of solids with microcracks: load-induced anisotropy[J]. Journal of the Mechanics and Physics of Solids, 1983, 31(2): 155-171. https://doi.org/10.1016/0022-5096(83)90048-0. [6] Lawn B R, Marshall D B. Nonlinear stress-strain curves for solids containing closed cracks with friction[J]. Journal of the Mechanics and Physics of Solids, 1998, 46(1): 85-113. https://doi.org/10.1016/S0022-5096(97)00036-7. [7] Feeny B, Guran A, Hinrichs N, et al. A historical review on dry friction and stick-slip phenomena[J]. Applied Mechanics Reviews, 1998, 51(5): 321-341. https://doi.org/10.1115/1.3099008. [8] Ida Y. Cohesive force across the tip of a longitudinal-shear crack and Griffiths specific surface energy[J]. Journal of Geophysical Research, 1972, 77(20): 3796-3805. https://doi.org/10.1029/JB077i020p03796. [9] Palmer A C, Rice J R. The growth of slip surfaces in the progressive failure of over-consolidated clay[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1973, 332(1591): 527-548. https://doi.org/10.1098/rspa.1973.0040. [10] Ruina A. Slip instability and state variable friction laws[J]. Journal of Geophysical Research: Solid Earth, 1983, 88(B12): 10359-10370. https://doi.org/10.1029/JB088iB12p10359 [11] Uenishi K, Rice J R. Universal nucleation length for slip-weakening rupture instability under nonuniform fault loading[J]. Journal of Geophysical Research: Solid Earth, 2003, 108(B1). https://doi.org/10.1029/2001JB001681. [12] David E C, Brantut N, Schubnel A, et al. Sliding crack model for nonlinearity and hysteresis in the uniaxial stress-strain curve of rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2012, 52: 9-17. https://doi.org/10.1016/j.ijrmms.2012.02.001. [13] Cates M E, Wittmer J P, Bouchaud J P, et al. Jamming, force chains, and fragile matter[J]. Physical review letters, 1998, 81(9): 1841. https://doi.org/10.1103/PhysRevLett.81.1841. [14] Peters J F, Muthuswamy M, Wibowo J, et al. Characterization of force chains in granular material[J]. Physical review E, 2005, 72(4): 041307. https://doi.org/10.1103/PhysRevE.72.041307. [15] Zhang X, Jeffrey G R, Mai Y. A micromechanics-based Cosserat-type model for dense particulate solids[J]. ZAMP: Zeitschrift fur Angewandte Mathematik und Physik, 2006, 57(4): 682-707. https://doi:10.1007/s00033-005-0025-6 [16] Greenwood J A, Williamson J B P. Contact of nominally flat surfaces[J]. Proceedings of the royal society of London. Series A. Mathematical and physical sciences, 1966, 295(1442): 300-319. https://doi.org/10.1098/rspa.1966.0242. [17] Yamada K, Takeda N, Kagami J, et al. Mechanisms of elastic contact and friction between rough surfaces[J]. Wear, 1978, 48(1): 15-34. https://doi.org/10.1016/0043-1648(78)90135-7. [18] Biegel R L, Wang W, Scholz C H, et al. Micromechanics of rock friction 1. Effects of surface roughness on initial friction and slip hardening in westerly granite[J]. Journal of Geophysical Research: Solid Earth, 1992, 97(B6): 8951-8964. https://doi.org/10.1029/92JB00042. [19] Bouchbinder, E. , E. A. Brener, I. Barel, and M. Urbakh, Slow cracklike dynamics at the onset of frictional sliding[ J]. 2011, Phys. Rev. Lett. 107, 235501. https://doi.org/10.1103/PhysRevLett.107.235501 [20] 李国琛, 耶纳. 塑性大应变微结构力学[M]. 北京: 科学 出版社, 2003. [21] Mair K, Frye K M, Marone C. Influence of grain characteristics on the friction of granular shear zones[J]. Journal of Geophysical Research: Solid Earth, 2002, 107(B10): ECV 4-1-ECV 4-9. https://doi.org/10.1029/2001JB000516. [22] Morgan J K. Particle dynamics simulations of rate-and state-dependent frictional sliding of granular fault gouge[J]. Computational earthquake science part I, 2004: 1877-1891. https://doi.org/10.1007/s00024-004-2537-y. [23] Scuderi M M, Collettini C, Viti C, et al. Evolution of shear fabric in granular fault gouge from stable sliding to stick slip and implications for fault slip mode[J]. Geology, 2017, 45(8): 731-734. https://doi.org/10.1130/G39033.1. [24] Okubo P G, Dieterich J H. Effects of physical fault properties on frictional instabilities produced on simulated faults[J]. Journal of Geophysical Research: Solid Earth, 1984, 89(B7): 5817-5827. https://doi.org/10.1029/JB089iB07p05817 [25] Marone C. On the rate of frictional healing and the constitutive law for time-and slip-dependent friction[J]. International Journal of Rock Mechanics and Mining Sciences, 1997, 34(4): 187. https://doi.org/10.1016/S1365-1609(97)00054-3. [26] Nakatani M. A new mechanism of slip weakening and strength recovery of friction associated with the mechanical consolidation of gouge[J]. Journal of Geophysical Research Solid Earth, 1998, 103(B11): 27239-27256. https://doi.org/10.1029/98JB02639. [27] Dieterich J H. Constitutive properties of faults with simulated gouge[J]. Mechanical behavior of crustal rocks: the Handin volume, 1981, 24: 103-120. https://doi.org/10.1029/GM024p0103. [28] Dieterich J H, Kilgore B D. Direct observation of frictional contacts: New insights for sliding memory effects [J]. Pure and Applied Geophysics, 1994, 143(1): 283-302. https://doi.org/10.1007/bf00874332 [29] Rice J R. The mechanics of earthquake rupture[M]. Providence: Division of Engineering, Brown University, 1979. [30] Wong T F. On the normal stress dependence of theshear fracture energy[J]. Earthquake source mechanics, 1986, 37: 1-11. https://doi.org/10.1029/GM037p0001 [31] Brantut N, Schubnel A, Rouzaud J N, et al. High-velocityfrictional properties of a clay-bearing fault gouge andimplications for earthquake mechanics[J]. Journal ofGeophysical Research: Solid Earth, 2008, 113(B10). https://doi.org/10.1029/2007JB005551 [32] Hirakawa E, Ma S. Dynamic fault weakening andstrengthening by gouge compaction and dilatancy in afluid-saturated fault zone[J]. Journal of GeophysicalResearch: Solid Earth, 2016, 121(8): 5988-6008. https://doi.org/10.1002/2015JB012509. [33] Cocco M, Bizzarri M. On the slip-weakening behavior ofrate-and state dependent constitutive laws[J]. GeophysicalResearch Letters, 2002, 29(11): 157-162. https://doi.org/10.1029/2001GL013999 [34] Marone C. Laboratory-derived friction laws and theirapplication to seismic faulting[J]. Annual Review ofEarth and Planetary Sciences, 1998, 26(1): 643-696. https://doi.org/10.1146/annurev.earth.26.1.64