2024年5月19日 星期日
基于速度模型融合与断控约束的三维层析反演方法
A 3D Tomographic Inversion Method Based on Velocity Model Fusion with Fault Constraints
摘要

常规的网格层析反演是基于反射波的走时与共成像点的剩余曲率来构建矢量方程从而更新速度, 然而, 在复杂地表区域的单炮信噪比低, 反射信息不足等因素导致近地表区域速度建模精度不足, 且缺少层位与断层的约束, 无法准确还原深层的实际构造。目前工业中广泛使用的方法是将初至波层析反演得到的浅层速度以向下平移一定深度的地表高程面作为融合面与反射波层析得到的中深层速度相融合, 但这种方法会在融合区出现明显的融合痕迹, 且融合处的速度值会发生突变。为此, 本文从层析反演的原理出发, 根据初至波射线密度与两模型差值来拾取融合面, 并构建符合工区地质背景的融合函数进行速度融合, 最大限度消除融合痕迹与融合处速度值突变的问题, 并在之后的层析反演过程中加入断层约束。本方法运用速度融合, 断控约束以及改善剩余曲率拾取方法来提高复杂山地区的速度建模与成像精度。复杂模型结果证明了正确性, 实际资料测试结果证明了适用性。

Abstract

Conventional grid-tomographic inversion is based on the travel time of the reflected waves and the residual curvature of the co-imaged points to construct vector equations and thus update the velocities, however, in the complex surface region, factors such as low signal-to-noise ratio of a single shot and insufficient reflection information lead to insufficient accuracy of velocity modelling in the near-surface region, and the lack of layers and fault constraints, which can not accurately restore the actual structure of the deeper layers. The current method widely used in industry is to fuse the shallow velocities obtained from the tomographic inversion by first breaks with the surface elevation plane at a certain depth downward as the fusion surface and the mid-deep velocities obtained from the grid tomography, but this method will show obvious fusion marks in the fusion area and the velocity values at the fusion point will change abruptly. For this reason, this paper starts from the principle of tomography inversion by first breaks, picks up the fusion surface based on the first-to-wave ray density and the difference between the two models, and constructs a fusion function for velocity fusion that fits the geological background of the work area, so as to eliminate the problem of fusion trace and abrupt changes in velocity values at the fusion trace to the maximum extent, and add fault constraints during the subsequent stratigraphic inversion. This method uses velocity fusion, fault-control constraints and improved residual curvature pickup method to improve velocity modelling and imaging accuracy in complex mountain regions. The complex model results prove the correctness, and practical data test results prove the applicability.  

DOI10.48014/cpngr.20230425001
文章类型研究性论文
收稿日期2023-03-25
接收日期2023-03-27
出版日期2023-03-28
关键词速度融合, 层位约束, 三维角道集提取, 全局层析, 偏移成像
KeywordsVelocity fusion, layer constraints, extraction of 3D ADCIGS, global tomography, migration imaging
作者熊鹰杰1, 王非翊2, 孟庆利1, 刘明1, 杜园1, 云惠芳1
AuthorXIONG Yingji1, WANG Feiyi2, MENG Qingli1, LIU Ming1, DU Yuan1, YUN Huifang1
所在单位1. 中国石化华东油气分公司勘探开发研究院, 南京 210000
2. 地球与空间科学学院, 北京大学, 北京 100871
Company1. Research Institute of Petroleum Exploration & Development, Sinopec East China Oil and Gas Company, Nanjing 210000, China
2. School of Earth and Space Sciences, Peking University, Beijing 100871, China
浏览量375
下载量182
基金项目中国石化科技开发部项目“常压页岩气地球物理评价技术研究”(P21087-3)资助。
参考文献[1] 秦宁, 李振春, 杨晓东. 基于角道集的井约束层析速度反演[J]. 石油地球物理勘探, 2011, 46(5): 725-731.
https://doi.org/10.13810/j.cnki.issn.1000-7210.2011.05.011
[2] 李振春, 王华忠, 马在田. 共中心点道集偏移速度分析[J]. 石油物探, 2000, 39(1): 20-26.
[3] 王延光, 尚新民, 赵胜天, 等. 山前带联合层析反演地震成像[J]. 石油地球物理勘探, 2021. 56(4): 782-791.
https://doi.org/10.13810/j.cnki.issn.1000-7210.2021.04.011
[4] 蔡杰雄, 王静波. 一种基于改进快速扫描法的多尺度近地表层析方法[J]. 石油物探, 2019, 58(6): 819-827.
https://doi.org/10.3969/j.issn.1000-1441.2019.06.004
[5] 王川, 李振春, 李文燕, 等. 复杂近地表三维初至波走时层析方法研究[J]. 地球物理学进展, 2018, 33(5): 1967-1973.
https://doi.org/10.6038/pg2018BB0216
[6] 徐嘉亮, 张冰. 基于层位约束的不规则网格层析速度建模方法[J]. 地球物理学进展, 2020, 35(2): 669-673.
https://doi.org/10.6038/pg2020BB0400
[7] 郭振波, 孙鹏远, 钱忠平, 等. 快速回转波近地表速度建模方法[J]. 石油地球物理勘探, 2019, 54(2): 261-267.
https://doi.org/10.13810/j.cnki.issn.1000-7210.2019.02.003
[8] 王华忠, 张兵, 刘少勇, 等. 山前带地震数据成像处理流程探讨[J]. 石油物探, 2012, 51(06): 574-583.
https://doi.org/10.3969/j.issn.1000-1441.2012.06.005
[9] 崔栋, 张研, 胡英, 等. 近地表速度建模方法综述[J]. 地球物理学进展, 2014, 29(6): 2635-2641.
https://doi.org/10.6038/pg20140625
[10] 张兵, 徐兆涛, 王华忠, 等. 山前带地震数据共成像点道集层析速度反演建模方法研究[J]. 石油物探, 2012, 51(6): 590-597.
https://doi.org/10.3969/j.issn.1000-1441.2012.06.007
[11] 张兵, 王华忠. 数据域初至波走时与成像域反射波走时联合层析速度建模方法[J]. 地球物理学报, 2019, 62(7): 2633-2644.
https://doi.org/10.6038/cjg2019M0536
[12] 王潇, 杨锴. 基于二维VTI拟声波程函方程的椭圆各向异性立体层析反演[J]. 地球物理学报, 2018, 61(12): 4954-4964.
https://doi.org/10.6038/cjg2018M0212
[13] 张建明, 董良国, 王建华. 波动方程初至波多信息联合反演方法[J]. 地球物理学报, 2021, 64(7): 2447-2460.
https://doi.org/10.6038/cjg2021O0278
[14] Billette F, Lambare G. velocity macro-model estimationfrom seismic reflection data by stereotomography [J]. Geophysical Journal International, 1988, 135(2): 671-690.
https://doi.org/10.1046/j.1365-246X.1998.00632.x
[15] Siwei L, Vladimirsky A, Fomel S. First-break traveltime tomography with the double-square-root eikonalequation [J]. Geophysics, 2013, 78(6): U89-U101. doi. : 10. 1190/geo2013-0058. 1
[16] Taikun S, Jianzhong Z, Zhonglai H, et al. A layer-strippingmethod for 3D near-surface velocity model buildingusing seismic first-arrival times[J]. Journal ofEarth Science, 2015, 26(4): 502-507.
https://doi.org/10.1007/s12583-015-0569-0
[17] Bergman B. Seismic tomography studies of cover thicknessand near-surface bedrock velocities [J]. Geophysics, 2006, 71(6): 1ND-Z126.
https://doi.org/10.1190/1.2345191
[18] Stork C. Reflection tomography in the postmigrated domain[J]. Geophysics, 1992, 57(5): 680-692.
https://doi.org/10.1190/1.1443282
[19] Brandsberg-Dahl S, de Hoop V, and Ursin B. Velocity analysisin the common scattering-angle/azimuth domain [C]. SEG Expanded Abstracts, 1999: 1715-1718.
https://doi.org/10.1190/1.1820865
[20] Wang B, Dirks V, Guillaume P, et al. A fast and lowcost alternative to subsalt wave equation migration perturbationscans [C]. SEG Expanded Abstracts, 2005: 2375-2378.
https://doi.org/10.1190/1.2148166
[21] Woodward M, Nichols D, Zdraveva O, et al. A decade oftomography[J]. Geophysics, 2008, 73(5): VE5-VE11.
https://doi.org/10.1190/1.2969907
[22] Biondi B, and Sava P. P Wave-equation migration velocityanalysis [C]. SEG Expanded Abstracts, 1999: 1723-1726.
https://doi.org/10.1190/1.1820867
[23] Nurul Kabir, Uwe Albertin, Min Zhou, et al. Use of refraction, reflection, and wave-equation-based tomography forimaging beneath shallow gas: A Trinidad field data example[J]. Geophysics, 2008, 73(5): VE281-VE289.
https://doi.org/10.1190/1.2953064
[24] Hongbu Zhou, Yu Zhang, Samuel H Gray, et al. Regularizationalgorithms for seismic inverse problems[C]. SEG Expanded Abstracts, 2002: 942–945.
https://doi.org/10.1190/1.1817420
[25] Husen S, and Kissling E. LOCAL Earthquake tomographybetween rays and waves: Fatray tomography[J]. Physics of the Earh and Planetary Interiors, 2001, 125(1-4): 171-191.
https://doi.org/10.1016/S0031-9201(00)00206-5
[26] Weiwei G, Fengyuan X, Xiao W, et al. Anisotropicslope-tomography in VTI media preconditioned by animage guided smoothing filter[C]. SEG Expanded Abstracts, 2019: 5199-5203. doi. org/10. 1190/segam2019-3215621. 1
[27] Sergey Fomel. Time-migration velocity analysis by velocitycontinuation[J]. Geophysics, 2003, 68(5): 1446-1761.
https://doi.org/10.1190/1.1620640
[28] Borhan F, Stéphane O, Alessandra R, et al. Matrix-freeanisotropic slope tomography: Theory and application[J]. Geophysics, 2019, 84(1): R21-R43.
https://doi.org/10.1190/geo2018-0112.1
[29] 卢江波, 龙海滨, 张铭, 等. 初至波层析成像正演模拟中多发多收模式计算方法研究[J]. 地球物理学进展, 2020, 35(4): 1590-1594.
https://doi.org/10.6038/pg2020DD0291
[30] 潘奕铭, 桑运云, 姚雪峰, 等. 一种多信息约束的初至波走时层析反演优化方法[J]. 石油物探, 2023, 62(2): 271-280.
https://doi.org/10.3969/j.issn.1000-1441.2023.02.008
[31] 周衍, 饶莹. 黄土塬覆盖区的层析反演静校正方法研究[J]. 地球物理学报, 2019, 62(11): 4393-4400.
https://doi.org/10.6038/cjg2019N0304
引用本文熊鹰杰, 王非翊, 孟庆利, 等. 基于速度模型融合与断控约束的三维层析反演方法[J]. 中国石油天然气研究, 2023, 2(1): 1-14.
CitationXIONG Yingjie, WANG Feiyi, MENG Qingli, et al. A 3D tomographic inversion method based on velocity model fusion with fault constraints[J]. Chinese Petroleum and Natural Gas Research, 2023, 2(1): 1-14