参考文献
[1] Chen W. Status and challenges of Chinese deepwater oil and gas development[J]. Petroleum Science, 2011, 8(4): 477-484. https://doi.org/10.1007/s12182-011-0171-8 [2] 张功成, 屈红军, 张凤廉, 等. 全球深水油气重大新发现及启示[J]. 石油学报, 2019, 40(1): 1-34. https://doi.org/10.7623/syxb201901001 [3] 刘嘉, 张焕芝, 杨金华, 等. 全球油气勘探开发形势及技术发展趋势[J]. 世界石油工业, 2019, 26(6): 6-11. [4] 刘书杰, 谢仁军, 仝刚, 等. 中国海洋石油集团有限公司深水钻完井技术进展及展望[J]. 石油学报, 2019, 40(S2): 168-173. https://doi.org/10.7623/syxb2019S2017 [5] 杨金华. 全球深水钻井现状与前景[J]. 石油科技论坛, 2014, 33(1): 1-6. https://doi.org/10.3969/j.issn.1002-302x.2014.01.010 [6] 李中, 谢仁军, 吴怡, 等. 中国海洋油气钻完井技术的进展与展望[J]. 天然气工业, 2021, 41(8): 178-185. https://doi.org/10.3787/j.issn.1000-0976.2021.08.016 [7] 王友华, 王文海, 蒋兴迅. 南海深水钻井作业面临的挑战和对策[J]. 石油钻探技术, 2011, 39(2): 50-54. https://doi.org/10.3969/j.issn.1001-0890.2011.02.009 [8] 李中. 南海高温高压气田开发钻完井关键技术现状及展望[J]. 石油钻采工艺, 2016, 38(6): 730-736. https://doi.org/10.13639/j.odpt.2016.06.003 [9] 陈彬, 罗俊丰, 叶吉华, 等. 深水井控成功实践与技术分析[J]. 石油钻采工艺, 2015, 37(1): 129-131. https://doi.org/10.13639/j.odpt.2015.01.033 [10] 陈平, 马天寿. 深水钻井溢流早期监测技术研究现状[J]. 石油学报, 2014, 35(3): 602-612. https://doi.org/10.7623/syxb201403025 [11] 许玉强, 金衍, 管志川, 等. 深水钻井气侵溢流发展规律及隔水管气侵监测优势[J]. 中国石油大学学报(自然科学版), 2019, 43(1): 60-67. https://doi.org/10.3969/j.issn.1673-5005.2019.01.007 [12] 范翔宇, 帅竣天, 李枝林, 等. 油气井早期溢流监测技术研究现状及展望[J]. 钻采工艺, 2020, 43(3): 23-26. https://doi.org/10.3969/J.ISSN.1006-768X.2020.03.08 [13] 卓鲁斌, 葛云华, 汪海阁. 深水钻井早期井涌检测方法及未来趋势[J]. 石油钻采工艺, 2009, 31(1): 22-26. https://doi.org/10.3969/j.issn.1000-7393.2009.01.007 [14] 张晓东, 王海娟. 深水钻井技术进展与展望[J]. 天然气工业, 2010, 30(9): 1-4. https://doi.org/10.3787/j.issn.1000-0976.2010.09.012 [15] 殷志明, 盛磊祥, 蒋世全, 等. 深水多梯度钻井方法及仿真分析[J]. 天然气工业, 2012, 32(11): 64-67. https://doi.org/10.3787/j.issn.1000-0976.2012.11.015 [16] 叶吉华, 刘正礼, 罗俊丰, 等. 南海深水钻井井控技术难点及应对措施[J]. 石油钻采工艺, 2015, 37(1): 139-142. https://doi.org/10.13639/j.odpt.2015.01.036 [17] 申屠俊杰, 林伯韬, 陆吉. 深水浅层浅水流灾害风险评价与防灾方法研究[J]. 石油科学通报, 2021, 6(3): 451-464. https://doi.org/10.3969/j.issn.2096-1693.2021.03.036 [18] 孙金声, 廖波, 王金堂, 等. 分子模拟技术在天然气水合物相变机理方面的研究进展及应用[J]. 中南大学学报(自然科学版), 2022, 53(3): 757-771. https://doi.org/10.11817/j.issn.1672-7207.2022.03.001 [19] 伍贤柱, 胡旭光, 韩烈祥, 等. 井控技术研究进展与展望[J]. 天然气工业, 2022, 42(2): 133-142. https://doi.org/10.3787/j.issn.1000-0976.2022.02.014 [20] 葛亮, 黄凯强, 田贵云, 等. 基于电磁检测机理的井下环空流量测量方法研究[J]. 仪器仪表学报, 2019, 40(12): 161-174. https://doi.org/10.19650/j.cnki.cjsi.J1905700 [21] 唐弢, 马天寿, 陈平, 等. 井下微流量测量装置节流压差规律研究[J]. 石油机械, 2019, 47(3): 1-6. https://doi.org/10.16082/j.cnki.issn.1001-4578.2019.03.001 [22] 朱焕刚, 王树江, 李宗清, 等. 早期溢流及漏失的新型及时高精度监测计量系统[J]. 天然气工业, 2018, 38(12): 102-106. https://doi.org/10.3787/j.issn.1000-0976.2018.12.012 [23] 王健, 陈颖, 张军阳, 等. 钻井液循环系统减缓液面波动装置研发与应用[J]. 石油钻探技术, 2017, 45(5): 48-52. https://doi.org/10.11911/syztjs.201705009 [24] 冯光通. 气井钻井溢流早期监测技术[J]. 广西大学学报(自然科学版), 2016, 41(1): 291-300. https://doi.org/10.13624/j.cnki.issn.1001-7445.2016.0291 [25] 李基伟, 柳贡慧, 李军. 双梯度钻井U型管效应溢流监测方法研究[J]. 钻采工艺, 2016, 39(1): 19-22. https://doi.org/10.3969/J.ISSN.1006-768X.2016.01.06 [26] 关玉新. 加强井涌监测预报实现井控安全[J]. 录井工程, 2010, 21(3): 35-38. https://doi.org/10.3969/j.issn.1672-9803.2010.03.009 [27] 王江帅, 李军, 柳贡慧, 等. 气侵条件下新型双梯度钻井环空出口流量变化规律研究[J]. 石油钻探技术, 2020, 48(4): 43-49. https://doi.org/10.11911/syztjs.2020043 [28] 张锐尧, 李军, 柳贡慧, 等. 基于空心球滑移条件下的双梯度钻井井筒温压场的研究[J]. 石油科学通报, 2021, 6(3): 429-440. https://doi.org/10.3969/j.issn.2096-1693.2021.03.034 [29] 姜清兆, 王英胜, 毛敏, 等. 基于科里奥利质量流量计的早期井涌探测系统[J]. 石油天然气学报, 2013, 35(4): 158-160. https://doi.org/10.3969/j.issn.1000-9752.2013.04.036 [30] 屈俊波, 陈平, 马天寿, 等. 精确监测井底溢流的井下微流量装置设计与试验[J]. 石油钻探技术, 2012, 40(5): 106-110. https://doi.org/10.3969/j.issn.1001-0890.2012.05.023 [31] 刘飞, 付建红, 张智, 等. 超声波在钻井液中传播衰减理论研究[J]. 石油钻采工艺, 2012, 34(1): 57-59. https://doi.org/10.3969/j.issn.1000-7393.2012.01.016 [32] 卓鲁斌, 葛云华, 张富成, 等. 碳酸盐岩油气藏气侵早期识别技术[J]. 石油学报, 2012, 33(S2): 174-180. https://doi.org/10.7623/syxb2012S2018 [33] 石磊, 陈平, 胡泽, 等. 井下微流量控制方法[J]. 天然气工业, 2011, 31(02): 79-81. https://doi.org/10.3787/j.issn.1000-0976.2011.02.019 [34] 李相方, 管丛笑, 隋秀香, 等. 压力波气侵检测理论及应用[J]. 石油学报, 1997, 18(3): 128-138. https://doi.org/10.7623/syxb199703021 [35] Swanson BW, Gardner AG, Brown NP, et al. Slimholeearly kick detection by real-time drilling analysis[J]. SPE Drilling & Completion, 1997, 12(1): 27-32. https://doi.org/10.2118/25708-PA [36] Hargreaves D, Jardine S, Jeffryes B. Early kick detectionfor deepwater drilling: New probabilistic methodsapplied in the field[C]. SPE Annual Technical Conferenceand Exhibition, September 30-October 3, 2001, New Orleans, Louisian. https://doi.org/10.2118/71369-MS [37] Fraser D, Lindley R, Moore D, et al. Early kick detectionmethods and technologies[C]. SPE Annual TechnicalConference and Exhibition, October 27-29, 2014, Amsterdam, The Netherlands. https://doi.org/10.2118/170756-MS [38] Vajargah AK, van Oort E. Early kick detection andwell control decision-making for managed pressuredrilling automation[J]. Journal of Natural Gas Scienceand Engineering, 2015, 27: 354-66. https://doi.org/10.1016/j.jngse.2015.08.067 [39] Nayeem AA, Venkatesan R, Khan F. Monitoring ofdown-hole parameters for early kick detection[J]. Journal of Loss Prevention in the Process Industries, 2016, 40: 43-54. https://doi.org/10.1016/j.jlp.2015.11.025 [40] Fu J, Su Y, Jiang W, et al. Development and testing ofkick detection system at mud line in deepwater drilling[J]. Journal of Petroleum Science and Engineering, 2015, 135: 452-60. https://doi.org/10.1016/j.petrol.2015.10.013 [41] Huque MM, Imtiaz S, Rahman A, et al. Kick detectionand remedial action in managed pressure drilling: A review[J]. SN Applied Sciences. 2020, 2(7): 1-29. https://doi.org/10.1007/s42452-020-2962-2 [42] Yang H, Li J, Liu G, et al. A new method for early gaskick detection based on the consistencies and differencesof bottomhole pressures at two measured points[J]. Journal of Petroleum Science and Engineering, 2019, 176: 1095-105. https://doi.org/10.1016/j.petrol.2019.02.026 [43] Nhat DM, Venkatesan R, Khan F. Data-driven Bayesiannetwork model for early kick detection in industrialdrilling process[J]. Process Safety and EnvironmentalProtection, 2020, 138: 130-138. https://doi.org/10.1016/j.psep.2020.03.017 [44] Muojeke S, Venkatesan R, Khan F. Supervised datadrivenapproach to early kick detection during drillingoperation[J]. Journal of Petroleum Science and Engineering, 2020, 192: 107324. https://doi.org/10.1016/j.petrol.2020.107324 [45] Sleiti AK, Takalkar G, El-Naas MH, et al. Early gaskick detection in vertical wells via transient multiphaseflow modelling: A review[J]. Journal of Natural GasScience and Engineering, 2020, 80: 103391. https://doi.org/10.1016/j.jngse.2020.103391 [46] Jacobs T. Early kick detection: Testing new concepts[J]. Journal of Petroleum Technology, 2015, 67(8): 44-9. https://doi.org/10.2118/0815-0044-JPT [47] Choe J, Schubert J, Juvkam-Wold H. Analyses and proceduresfor kick detection in subsea mudlift drilling[J]. SPEDrilling & Completion, 2007, 22(4): 296-303. https://doi.org/10.2118/87114-PA [48] Bang J, Mjaaland S, Jensen L K, et al. Acoustic gaskickdetection with wellhead sonar[J]. Journal of PetroleumTechnology, 1995, 47(2): 111-112. https://doi.org/10.2118/28317-MS [49] Greenberg J. Weatherford sensors track vibration to increaseROP, temperature change for early kick detection[J]. Drilling Contractor, 2008, 64(2): 46-47. [50] Long R, Veeningen D. Networked drill pipe offers along-string pressure evaluation in real time[J]. WorldOil, 2011: 232(9): 91-94. [51] Osarogiagbon A, Muojeke S, Venkatesan R, et al. Anew methodology for kick detection during petroleumdrilling using long short-term memory recurrent neuralnetwork[J]. Process Safety and Environmental Protection, 2020, 142: 126-37. https://doi.org/10.1016/j.psep.2020.05.046 [52] Brakel JD, Tarr BA, Cox W, et al. SMART kick detection: First step on the well-control automation journey[J]. SPE Drilling & Completion, 2015, 30(3): 233-42. https://doi.org/10.2118/173052-PA [53] Tarr BA, Ladendorf DW, Sanchez D, et al. Next-generationkick detection during connections: influx detectionat pumps stop(IDAPS)software[J]. SPE Drilling &Completion, 2016, 31(4): 250-60. https://doi.org/10.2118/178821-PA [54] Kamyab M, Shadizadeh S, Jazayeri-rad H, et al. Earlykick detection using real time data analysis with dynamicneural network: A case study in Iranian oil fields[C]. Nigeria Annual International Conference and Exhibition, July 31-August 7, 2010, Tinapa-Calabar, Nigeria. https://doi.org/10.2118/136995-MS [55] 戴永寿, 岳炜杰, 孙伟峰, 等. “三高”油气井早期溢流在线监测与预警系统[J]. 中国石油大学学报(自然科学版), 2015, 39(3): 188-194. https://doi.org/10.3969/j.issn.1673-5005.2015.03.027 [56] 袁俊亮, 范白涛, 幸雪松, 等. 基于朴素贝叶斯算法的钻井溢流实时预警研究[J]. 石油钻采工艺, 2021, 43(4): 455-460. https://doi.org/10.13639/j.odpt.2021.04.007 [57] 李中. 中国海油油气井工程数字化和智能化新进展与展望[J]. 石油钻探技术, 2022, 50(2): 1-8. https://doi.org/10.11911/syztjs.2022061 [58] 李根生, 宋先知, 田守嶒. 智能钻井技术研究现状及发展趋势[J]. 石油钻探技术, 2020, 48(1): 1-8. https://doi.org/10.11911/syztjs.2020001. [59] 逄铭玉, 李勇, 傅建斌, 等. 基于专利信息的钻井早期溢流监测技术趋势分析[J]. 安全、健康和环境, 2022, 22(4): 5-10. https://doi.org/10.3969/j.issn.1672-7932.2022.04.002.