2024年5月19日 星期日
横观各向同性地层破裂压力测井计算方法
Fracture Pressure Calculation Method in Transversely Isotropic Formation by Logging
摘要

破裂压力是钻井工程、完井工程和水力压裂改造技术的关键参数之一, 利用测井资料计算连续的地层破裂压力是最常用的方法, 但常规计算方法忽略了地层各向异性的影响。为此, 将地层视为横向各向同性介质, 通过计算弹性刚度矩阵得到垂向和横向的杨氏模量及泊松比;考虑垂向应力与水平应变的关系了, 推导出基于深度— 应变关系计算地层破裂压力的新公式;最后, 将其优化编程并应用于L区块地层破裂压力的计算。地层破裂压力的现场实测结果和测井预测结果对比表明, L1井4266m处水力压裂实测地层破裂压力为90. 5MPa, 传统方法计算的破裂压力为93. 5MPa (与实测结果相对误差为5. 4%) 、横观各向同性方法计算的破裂压力为95. 4MPa (与实测结果相对误差为3. 3%) , 新方法计算的地层破裂压力精度优于传统方法计算的地层破裂压力精度, 有良好的适用性和可比性。

Abstract

Fracture pressure is one of the key parameters in drilling engineering, completion engineering and hydraulic fracturing technology. Using logging data to calculate continuous formation fracture pressure is the most commonly used method, but the effect of formation anisotropy is usually ignored by the conventional method. To this end, the formation is considered as the transversely isotropic medium, and the Young' s modulus and Poisson's ratio in the vertical and horizontal directions are obtained by calculating the elastic stiffness matrix. By considering the relationship between vertical stress and horizontal strain, a novel formula is derived to calculate the formation fracture pressure based on the relationship between depth and strain. Finally, this novel formation fracture pressure formula is optimally programmed and applied to the calculation of the formation fracture pressure in Block L. The comparison between the field measurement results of formation fracture pressure and the logging prediction results shows that the measured formation fracture pressure of hydraulic fracturing at 4, 266m in Well L1 is 90. 5MPa, while the fracture pressure calculated by the traditional method is 93. 5MPa (with a relative error of 5. 4% compared with the measured results) , and the fracture pressure calculated by the transversely isotropic method is 95. 4MPa (with a relative error of 3. 3% compared with the measured results) . The accuracy of the formation fracture pressure calculated by the new method is better than that of the formation fracture pressure calculated by the traditional method, which is applicable and comparable.

 

DOI10.48014/cpngr.20220801001
文章类型研究性论文
收稿日期2022-08-01
接收日期2022-08-23
出版日期2022-09-28
关键词钻井工程, 水力压裂, 破裂压力, 横向各向同性, 测井资料, 刚度矩阵
KeywordsDrilling engineering, hydraulic fracturing, fracture pressure, transversely isotropy, logging data, stiffness matrix
作者桂俊川1,*, 夏宏泉2, 桑宇3, 曾波1, 吴建4, 宋毅1, 黄浩勇1, 徐尔斯1
AuthorGUI Junchuan1,*, XIA Hongquan2, SANG Yu3, ZENG Bo1, WU Jian4, SONG Yi1, HUANG Haoyong1, XU Ersi1
所在单位1. 中国石油西南油气田分公司页岩气研究院, 成都 610051
2. 西南石油大学油气藏地质及开发工程国家重点实验室, 成都 610500
3. 中国石油西南油气田分公司, 成都 646000
4. 中国石油西南油气田分公司蜀南气矿, 泸州 646000
Company1. Research Institute of Shale Gas, PetroChina Southwest Oil and Gasfield Company, Chengdu 610051, China
2. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China
3. Petro China Southwest Oil & Gasfield Company, Chengdu 610051, China
4. Shunan Gas Field of Petro China Southwest Oil & Gasfield Company, Luzhou 646000, China
浏览量611
下载量241
基金项目西南油气田博士后项目“深层页岩地质力学与有效压裂影响因素研究”(编号:20210302-31);
西南油气田分公司科研项目“阳101井区地质工程一体化”。
参考文献[1] Ma Tianshou, Zhang Q B, Chen Ping, et al. Fracture pressure model for inclined wells in layered formations with anisotropic rock strengths[J]. Journal of Petroleum Science and Engineering, 2017, 149: 393-408.
https://doi.org/10.1016/j.petrol.2016.10.050
[2] Ma Tianshou, Wu Bisheng, Fu Jianhong, et al. Fracture pressure prediction for layered formations with anisotropic rock strengths[J]. Journal of Natural Gas Science and Engineering, 2017, 38: 485-503.
https://doi.org/10.1016/j.jngse.2017.01.002
[3] Ma Tianshou, Liu Yang, Chen Ping, et al. Fracture-initiation pressure analysis of horizontal well in anisotropic formations[J]. International Journal of Oil Gas and Coal Technology, 2019, 22(4): 447-469.
https://doi.org/10.1504/IJOGCT.2019.103508
[4] 马天寿, 杨春和, 陈平, 等. 层状页岩储层水平井破裂压力模型[J]. 天然气工业, 2017, 37(S1): 161-169.
[5] 马天寿, 王浩男, 杨赟, 等. 不同地应力状态下各向异性地层斜井井壁破裂规律[J]. 中南大学学报(自然科学版), 2022, 53(3): 1123-1135.
https://doi.org/10.11817/j.issn.1672-7207.2022.03.031
[6] 马天寿 唐弢, 陈平, 等. 各向异性地层井壁破裂压力预测[J]. 中国石油大学学报(自然科学版), 2019, 43(3): 80-89.
https://doi.org/10.3969/j.issn.1673-5005.2019.03.009
[7] 马天寿, 彭念, 陈平, 等. 页岩气水平井井壁裂缝起裂力学行为研究[J]. 西南石油大学学报(自然科学版), 2019, 41(6): 87-99.
https://doi.org/10.11885/j.issn.1674-5086.2019.09.16.05
[8] Liu Yang, Ma Tianshou, Chen Ping, et al. Effects of permeable plugs on wellbore strengthening[J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 132: 104416.
https://doi.org/10.1016/j.ijrmms.2020.104416
[9] Liu Yang, Chen Ping, Wu Bisheng, et al. Mechanics of hydraulic fracture growth from a wellbore intersecting natural fractures[J]. SPE Journal, 2020, 25(2): 646-661.
https://doi.org/10.2118/198890-PA
[10] Liu Yang, Chen Congrui, Ma Tianshou, et al. Experimental investigation on the initiation of hydraulic fractures from a simulated wellbore in laminated shale[J]. Lithosphere, 2021: 4152918.
https://doi.org/10.2113/2021/4152918
[11] Ma Tianshou, Liu Yang, Chen Ping, et al. Fracture-initiation pressure prediction for transversely isotropic formations[ J]. Journal of Petroleum Science and Engineering, 2019, 176: 821-835.
https://doi.org/10.1016/j.petrol.2019.01.090
[12] 林伯韬. 疏松砂岩储层微压裂机理与应用技术研究[J]. 石油科学通报, 2021, 6(2): 209-227.
https://doi.org/10.3969/j.issn.2096-1693.2021.02.017
[13] 黄荣樽. 地层破裂压力预测模式的探讨[J]. 华东石油学院学报, 1984, 9(4): 335-347.
[14] 夏宏泉, 张元泽, 陈平, 等. 碳酸盐岩地层破裂压力的测井预测研究[J]. 天然气工业, 2004, 24(8): 32-35.
https://doi.org/10.3321/j.issn:1000-0976.2004.08.011
[15] 王越之. 各向异性地层应力的推算及深孔地层破裂压力的预测[J]. 岩石力学与工程学报, 1998, 17(3): 322-329.
[16] 高坤, 陶果, 仵岳奇, 等. 利用多极子阵列声波测井资料计算横向各向同性地层破裂压力[J]. 中国石油大学学报(自然科学版), 2007, 31(1): 35-39.
https://doi.org/10.3321/j.issn:1000-5870.2007.01.007
[17] 桂俊川, 马天寿, 陈平. 横观各向同性页岩岩石物理模型建立—以龙马溪组页岩为例[J]. 地球物理学报, 2020, 63(11): 4188-4204.
https://doi.org/10.6038/cjg2020N0294
[18] 桂俊川, 陈平, 马天寿. 正交各向异性岩石弹性参数的空间展布[J]. 西南石油大学学报(自然科学版), 2019, 41(3): 13-28.
https://doi.org/10.11885/j.issn.1674-5086.2018.09.21.02
[19] Gui Junchuan, Ma Tianshou, Chen Ping, et al. Anisotropic damage to hard brittle shale with stress and hydration coupling[J]. Energies, 2018, 11(4): 926.
https://doi.org/10.3390/en11040926
[20] 唐晓明, 郑传汉. 定量测井声学[M]. 北京: 石油工业出版社, 2004: 108-109.
[21] 王华, 王兵, 景安语, 等. 斯通利波反演求取横波各向异性参数的方法及实例[J]. 测井技术, 2007, 31(3): 241-244.
https://doi.org/10.3969/j.issn.1004-1338.2007.03.011
[22] Gui Junchuan, Guo Jianchun, Sang Yu, et al. Evaluation on the anisotropic brittleness index of shale rock using geophysical logging[J]. Petroleum, 2022,
https://doi.org/10.1016/j.petlm.2022.06.001
[23] Walsh J, Sinha B, Donald A. Formation anisotropy parameters using borehole sonic data[C]. SPWLA 47th Annual Logging Symposium, 4-7 June, 2006, Veracruz, Mexico.
http://www.onepetro.org/conference-paper/SPWLA-2006-TT
[24] Higgins S M, Goodwin S A, Donald A, et al. Anisotropic stress models improve completion design in the Baxter shale[C]. SPE Annual Technical Conference and Exhibition, 21-24 September, 2008, Denver, Colorado, USA.
https://doi.org/10.2118/115736-MS
[25] Suarez-Rivera R, Deenadayalu C, Chertov M, et al. Improving horizontal completions on heterogeneous tight shales[C]. Canadian Unconventional Resources Conference, 15-17 November, 2011, Calgary, Alberta, Canada.
https://doi.org/10.2118/146998-MS
[26] Song L, Hareland G. Minimum horizontal stress profile from logging data for Montney Formation of North East British Columbia[C]. SPE Canadian Unconventional Resources Conference, 30 October-1 November, 2012, Calgary, Alberta, Canada.
https://doi.org/10.2118/162233-MS
[27] 陈勉, 金衍, 张广清. 石油工程岩石力学[M]. 北京: 科学出版社, 2008.
[28] 任岚, 赵金洲, 胡永全, 等. 水力压裂时岩石破裂压力数值计算[J]. 岩石力学与工程学报, 2009, 28(S2): 3417-3422.
https://doi.org/10.3321/j.issn:1000-6915.2009.z2.018
[29] 梁利喜, 许强, 刘向君. 南海某油井地应力剖面的测井构建研究[J]. 中国矿业, 2007, 16(3): 111-113.
https://doi.org/10.3969/j.issn.1004-4051.2007.03.035
[30] 付金华, 李明瑞, 张雷, 等. 鄂尔多斯盆地陇东地区铝土岩天然气勘探突破与油气地质意义探索[J]. 天然气工业, 2021, 41(11): 1-11.
https://doi.org/10.3787/j.issn.1000-0976.2021.11.001
引用本文桂俊川, 夏宏泉, 桑宇, 等. 横观各向同性地层破裂压力测井计算方法[J]. 中国石油天然气研究, 2022, 1(2): 15-22.
CitationGUI Junchuan, XIA Hongquan, SANG Yu, et al. Fracture pressure calculation method in transversely isotropic formation by logging[J]. Chinese Petroleum and Natural Gas Research, 2022, 1(2): 15-22.