量子引力调制下的中子超流体核反应机制:一种潜在的高能密度反应模型

Quantum Gravity-Induced Neutron Superfluid Reaction Mechanism: A Potential High-Energy-Density Model

本文提出了一种基于量子引力调制效应的中子超流体核反应模型 (QGM-NSR) 。该模型假设在强等效引力场 (通过高场强电磁类比系统模拟) 中, 中子波函数的相干性增强, 形成量子引力诱导的超流体态, 从而触发高能密度反应过程。修正的薛定谔方程引入引力势修正项ΔV_qg, 以描述中子波函数的引力耦合行为。蒙特卡洛模拟结果显示, 在等效引力加速度|Φ_G|≈10-10J/kg与中子数密度ρ=1044m-3 条件下, 反应速率峰值约为107s-1, 能量密度约1012J/kg, 且功率谱密度呈现1/f特性, 暗示自组织临界性 (SOC) 的出现。研究结果为理解量子引力与凝聚态核物理的交叉机制提供了新思路, 并为未来高效核能开发提供了理论依据。

This paper proposes a neutron superfluid nuclear reaction model based on the quantum gravity modulation effect (QGM-NSR) . The model assumes that in a strong equivalent gravitational field (simulated through a high-field-strength electromagnetic analog system) , the coherence of the neutron wave function is enhanced, forming a quantum gravity-induced superfluid state, thereby triggering high-energy-density reaction processes. The modified Schrödinger equation incorporates a gravitational potential correction term ΔV_qg to describe the gravitational coupling behavior. of the neutron wave function. Monte Carlo simulation results indicate that under conditions of equivalent gravitational acceleration |Φ_G|≈10-10 J/kg and neutron number density ρ=1044m-3, the reaction rate peaks at approximately 107s-1, with an energy density of about 1012 J/kg, and the power spectral density exhibits 1/f characteristics, suggesting the emergence of self-organized criticality (SOC) . The findings provide new insights into understanding the intersection between quantum gravity and condensed nuclear physics, and offer a theoretical basis for the future development of efficient nuclear energy.