2024年5月6日 星期一
球状星团中的黑洞
Black Holes in Globular Clusters
摘要

黑洞是宇宙中极端物理研究的实验室, 探测黑洞是目前国际最前沿的科学目标之一。球状星团是银河系中年老的自引力束缚天体系统, 内部包含上百万颗恒星, 恒星密度很高。球状星团中已经观测到存在几百颗脉冲星天体, 但至今黑洞是否存在于球状星团中依然是个未解之谜。球状星团中在中心可能存在一颗中等质量黑洞, 黑洞质量范围是一千到一万倍太阳质量。同时球状星团中可能存在大量的恒星级黑洞, 这些黑洞的存在将影响球状星团的演化, 并在球状星团中形成一些特殊天体, 从而可以被天文观测设备观测和证实。本文将重点阐述在球状星团中黑洞存在的可能观测特征及对球状星团性质的影响。黑洞与寄主球状星团通过动力学耦合在一起, 球状星团是形成黑洞X射线双星和引力波源的重要场所, 同时黑洞会改变寄主星团的动力学结构与演化进程。因此搜寻X射线源, 探测引力波信号, 研究球状星团的特征是探测球状星团中黑洞的重要天文证据。

Abstract

Black holes are the laboratory for extreme physics research in the universe, and the detection of black holes is one of the most cutting-edge international scientific goals at present. Globular clusters are old, self-gravity-bound object systems in the Milky Way that contain millions of stars with a high stellar densities inside. Hundreds of pulsar objects have been observed in globular clusters, but the existence of black holes in globular clusters remains an unsolved mystery. A globular cluster may have an intermediatemass black hole at its centre, with masses ranging from 1, 000 to 10, 000 times solar masses. At the same time, there may be a large number of stellar black holes in globular clusters, which will affect the evolution of globular clusters and form. some special objects in globular clusters, which can be observed and confirmed by astronomical observation equipment. This paper will focus on the possible observational features of the presence of black holes in globular clusters and their effects on the properties of globular clusters. Black holes are coupled with their host globular clusters through dynamics, which are important sites for the formation of black hole X-ray binaries and gravitational wave sources, and black holes change the dynamical structure and evolutionary processes of their host clusters. Therefore, searching for X-ray sources, detecting gravitational wave signals, and studying the characteristics of globular clusters are important astronomical evidence for detecting black holes in globular clusters.  

DOI10.48014/cpr.20230527001
文章类型综 述
收稿日期2023-05-31
接收日期2023-06-25
出版日期2023-09-28
关键词黑洞, 球状星团
KeywordsBlack holes, globular clusters
作者成忠群1,2
AuthorCHENG Zhongqun1,2
所在单位1. 武汉大学物理科学与技术学院天文学系, 武汉 430072,
2. 武汉大学-国家天文台联合天文中心, 武汉 430072。
Company1. Department of Astronomy, School of Physics and Technology, Wuhan University, Wuhan 430072, China
2. WHU-NAOC Joint Center for Astronomy, Wuhan University, Wuhan 430072.
浏览量54
下载量20
参考文献[1] Shao Y, Li X. -D. Population synthesis of black hole binaries with compact star companions[J]. The Astrophysical Journal, 2021, 920: 81.
http://dx.doi.org/10.3847/1538-4357/ac173e
[2] Shao Y, Li X. -D. Population Synthesis of Black Hole Binaries with Normal-star Companions. I. Detached Systems, The Astrophysical Journal, 2019, 885, 151.
http://dx.doi.org/10.3847/1538-4357/ab4816
[3] Heggie, D. & Hut, P. The Gravitational Million-Body Problem: A Multidisciplinary Approach to Star Cluster Dynamics[M]. Cambridge: Cambridge University Press, 2003: 372.
https://doi.org/10.1063/1.1768676
[4] Hills J. G. Encounters between binary and single stars and their effect on the dynamical evolution of stellar systems. The Astronomical Journal, 1975, 80, 809.
http://dx.doi.org/10.1086/111815
[5] Heggie D. C. Binary Evolution in Stellar Dynamics, Monthly Notices of the Royal Astronomical Society, 1975, 173, 729.
http://dx.doi.org/10.1093/mnras/173.3.729
[6] Fregeau J. M, Gurkan M. A, Joshi K. J, Rasio F. A. “Monte Carlo Simulations of Globular Cluster Evolution. III. Primordial Binary Interactions”, The Astrophysical Journal, 2003, 593, 772.
http://dx.doi.org/10.1086/376593
[7] Cheng, Z, Li, Z, Li, X, et al. Exploring the Mass Segregation Effect of X-Ray Sources in Globular Clusters: The Case of 47 Tucanae, The Astrophysical Journal, 2019, 876, 59.
http://dx.doi.org/10.3847/1538-4357/ab1593
[8] Bao, T, Li, Z, & Cheng, Z. Periodic X-ray sources in the massive globular cluster 47 Tucanae: Evidence for dynamically formed cataclysmic variables, Monthly Notices of the Royal Astronomical Society, 2023, 521, 4257.
https://doi.org/10.1093/mnras/stad836
[9] Strader J, Chomiuk L, Maccarone T. J, et al. Two stellarmass black holes in the globular cluster M22, Nature, 2012, 490, 71.
https://doi.org/10.1038/nature11490
[10] Chomiuk L, Strader J, Maccarone T. J, et al. A radio-selected black hole X-ray binary candidate in the milky way globular cluster M62, The Astrophysical Journal, 2013, 777, 69.
http://dx.doi.org/10.1088/0004-637X/777/1/69
[11] Miller-Jones J. C. A, Strader J, Heinke C. O, et al. Deep radio imaging of 47 Tuc identifies the peculiar X-ray source X9 as a new black hole candidate, Monthly Notices of the Royal Astronomical Society, 2015, 453, 3918.
https://doi.org/10.1093/mnras/stv1869
[12] Shishkovsky L, Strader J, Chomiuk L, et al. The MAVERIC Survey: A Red Straggler Binary with an Invisible Companion in the Galactic Globular Cluster M10, The Astrophysical Journal, 2018, 855, 55.
http://dx.doi.org/10.3847/1538-4357/aaadb1
[13] Giesers B, Dreizler S, Husser T. -O, et al. A detached stellar-mass black hole candidate in the globular cluster NGC 3201, Monthly Notices of the Royal Astronomical Society, 2018, 475, L15.
https://doi.org/10.1093/mnrasl/slx203
[1] Giesers B, Kamann S, Dreizler S, et al. A stellar census in globular clusters with MUSE: Binaries in NGC 3201, Astronomy & Astrophysics, 2019, 632, A3.
https://doi.org/10.1051/0004-6361/201936203
[15] Kremer K, Ye C. S, Chatterjee S, Rodriguez C. L, Rasio F. A. The Role of “black hole burning” in the evolution of dense star clusters, Proceedings of the International Astronomical Union, 2020, 351, 357.
https://doi.org/10.1017/S1743921319007269
[16] Breen P. G, Heggie D. C. Dynamical evolution of black hole subsystems in idealized star clusters, Monthly Notices of the Royal Astronomical Society, 2013, 432, 2779.
https://doi.org/10.1093/mnras/stt628
[17] Kremer K, Ye C. S, Rui N. Z, Weatherford N. C, Chatterjee S, et al. Modeling Dense Star Clusters in the Milky Way and Beyond with the CMC Cluster Catalog, The Astrophysical Journal Supplement Series, 2020, 247, 48.
https://doi.org/10.3847/1538-4365/ab7919
[18] Ye C. S, Fong W. fai, Kremer K, et al. On the Rate of Neutron Star Binary Mergers from Globular Clusters, The Astrophysical Journal Letters, 2020, 888, L10.
https://doi.org/10.3847/2041-8213/ab5dc5
[19] Ye C. S, Kremer K, Chatterjee S, Rodriguez C. L, Rasio F. A. Millisecond Pulsars and Black Holes in Globular Clusters, The Astrophysical Journal, 2019, 877, 122.
https://doi.org/10.3847/1538-4357/ab1b21
[20] Holley-Bockelmann K。Gultekin K。Shoemaker D。 Yunes N. Gravitational Wave Recoil and the Retention of Intermediate-Mass Black Holes, The Astrophysical Journal, 2008, 686, 829.
https://doi.org/10.1086/591218
[21] Tremou E, Strader J, Chomiuk L, Shishkovsky L, et al. The MAVERIC Survey: Still No Evidence for Accreting Intermediate-mass Black Holes in Globular Clusters, The Astrophysical Journal, 2018, 862, 16.
https://doi.org/10.3847/1538-4357/aac9b9
[22] Su Z, Li Z, Hou M, Zhang M, Cheng Z. The Galactic Center: A Study of Stellar Dynamics, Monthly Notices of the Royal Astronomical Society, 2022, 516, 1788.
https://doi.org/10.1093/mnras/stac2345
[23] Kiziltan B, Baumgardt H, Loeb A. An intermediatemass black hole in the centre of the globular cluster 47 Tucanae, Nature, 2017, 542, 203.
https://doi.org/10.1038/nature21361
[24] Mann C. R, Richer H, Heyl J, Anderson J, et al. A Multimass Velocity Dispersion Model of 47 Tucanae Indi- cates No Evidence for an Intermediate-mass Black Hole, The Astrophysical Journal, 2019, 875, 1.
https://doi.org/10.3847/1538-4357/ab0e6d
[25] Spitzer L. Equipartition and the Formation of Compact Nuclei in Spherical Stellar Systems, The Astrophysical Journal Letters, 1969, 158, L139.
http://dx.doi.org/10.1086/180451
[26] Kulkarni S. R, Hut P, McMillan S. Stellar black holes in globular clusters, Nature, 1993, 364, 421.
https://doi.org/10.1038/364421a0
[27] Sigurdsson S, Hernquist L. Primordial black holes in globular clusters, Nature, 1993, 364, 423.
https://doi.org/10.1038/364423a0
[28] Morscher M, Umbreit S, Farr W. M, Rasio F. A. Retention of stellar-mass black holes in globular clusters, The Astrophysical Journal Letters, 2013, 763, L15.
https://doi.org/10.1088/2041-8205/763/1/L15
[29] Wang L, Spurzem R, Aarseth S, et al. The DRAGON simulations: globular cluster evolution with a million stars, Monthly Notices of the Royal Astronomical Society, 2016, 458, 1450.
https://doi.org/10.1093/mnras/stw274
[30] Morscher M, Pattabiraman B, Rodriguez C, Rasio F. A, Umbreit S. The dynamical evolution of stellar black holes in globular clusters, The Astrophysical Journal, 2015, 800, 9.
https://doi.org/10.1088/0004-637X/800/1/9
[31] Baumgardt H, He C, Sweet S. M, Drinkwater M, et al. No evidence for intermediate-mass black holes in the globular clusters ω Cen and NGC 6624, Monthly Notices of the Royal Astronomical Society, 2019, 488, 5340.
https://doi.org/10.1093/mnras/stz2060
[32] Zaris, J, Veske, D, Samsing, J, et al. Constraining Black Hole Populations in Globular Clusters Using Microlensing: Application to Omega Centauri, The Astrophysical Journal Letters, 2020, 894, L9.
https://doi.org/10.3847/2041-8213/ab89a3
[33] Mackey A. D, Wilkinson M. I, Davies M. B, Gilmore G. F. The effect of stellar-mass black holes on the structural evolution of massive star clusters, Monthly Notices of the Royal Astronomical Society: Letters, 2007, 379, L40.
https://doi.org/10.1111/j.1745-3933.2007.00330.x
[34] Mackey A. D, Wilkinson M. I, Davies M. B, Gilmore G. F. Black holes and core expansion in massive star clusters, Monthly Notices of the Royal Astronomical Society, 2008, 386, 65.
https://doi.org/10.1111/j.1365-2966.2008.13052.x
[35] Giersz M, Askar A, Wang L, Hypki A, Leveque A, Spurzem R. MOCCA survey data base- I. Dissolutionof tidally filling star clusters harbouring black holesubsystems, Monthly Notices of the Royal AstronomicalSociety, 2019, 487, 2412.
https://doi.org/10.1093/mnras/stz1460
[36] Arca Sedda, M, Askar, A, & Giersz, M. MOCCA-SurveyDatabase - I. Unravelling black hole subsystems inglobular clusters, Monthly Notices of the Royal AstronomicalSociety, 2018, 479, 4652.
https://doi.org/10.1093/mnras/sty1859
[37] Kremer K, Rui N. Z, Weatherford N. C, et al. WhiteDwarf Subsystems in Core-Collapsed Globular Clusters, The Astrophysical Journal, 2021, 917, 28.
https://doi.org/10.3847/1538-4357/ac06d4
[38] Weatherford, N. C, Chatterjee, S, Rodriguez, C. L, et al. Predicting Stellar-mass Black Hole Populations inGlobular Clusters, The Astrophysical Journal, 2018, 864, 13.
https://doi.org/10.3847/1538-4357/aad63d
[39] Askar A, Arca Sedda M, Giersz M. MOCCA-SURVEYDatabase I: Galactic globular clusters harbouring ablack hole subsystem, Monthly Notices of the RoyalAstronomical Society, 2018, 478, 1844.
https://doi.org/10.1093/mnras/sty1186
[40] Weatherford N. C, Chatterjee S, Kremer K, Rasio F. A. A Dynamical Survey of Stellar-mass Black Holes in 50Milky Way Globular Clusters, The Astrophysical Journal, 2020, 898, 162.
https://doi.org/10.3847/1538-4357/ab9f98
[41] Cheng, Z, Li, Z, Xu, X, et al. “The Galactic Center: AStudy of Stellar Dynamics and Black Hole Populations”, The Astrophysical Journal, 2018, 869, 52.
https://doi.org/10.3847/1538-4357/aaeb1e
[42] Heinke, C. O, Ivanov, M. G, Koch, E. W, et al. The Xrayemissivity of low-density stellar populations, Monthly Notices of the Royal Astronomical Society, 2020, 492, 5684.
https://doi.org/10.1093/mnras/staa194
[43] Ibata, R. A, Bellazzini, M, Malhan, K, et al. Identificationof the long stellar stream of the prototypical mas- sive globular cluster ω Centauri, Nature Astronomy, 2019, 3, 667.
https://doi.org/10.1038/s41550-019-0751-x
[44] Cheng Z, Li Z, Wang W, Li X, Xu X. Exploring theMass Segregation Effect of X-Ray Sources in GlobularClusters. IV. Evidence of Black Hole Burning in ω Centauri, The Astrophysical Journal, 2020, 904, 198.
https://doi.org/10.3847/1538-4357/abbdfc
[45] Odenkirchen M, Grebel E. K, Rockosi C. M, Dehnen W, et al. Detection of Massive Tidal Tails around the GlobularCluster Palomar 5 with Sloan Digital Sky SurveyCommissioning Data, The Astrophysical Journal Letters, 2001, 548, L165.
https://doi.org/10.1086/319095
[46] Gieles M, Erkal D, Antonini F, Balbinot E, PenarrubiaJ. A supra-massive population of stellar-mass blackholes in the globular cluster Palomar 5, Nature Astronomy, 2021, 5, 957.
https://doi.org/10.1038/s41550-021-01392-2
引用本文成忠群. 球状星团中的黑洞[J]. 中国物理学评论, 2023, 1(1): 1-11.
CitationCHENG Zhongqun. Black holes in globular clusters[J]. Chinese Physics Review, 2023, 1(1): 1-11.