参考文献
[1] Shao Y, Li X. -D. Population synthesis of black hole binaries with compact star companions[J]. The Astrophysical Journal, 2021, 920: 81. http://dx.doi.org/10.3847/1538-4357/ac173e [2] Shao Y, Li X. -D. Population Synthesis of Black Hole Binaries with Normal-star Companions. I. Detached Systems, The Astrophysical Journal, 2019, 885, 151. http://dx.doi.org/10.3847/1538-4357/ab4816 [3] Heggie, D. & Hut, P. The Gravitational Million-Body Problem: A Multidisciplinary Approach to Star Cluster Dynamics[M]. Cambridge: Cambridge University Press, 2003: 372. https://doi.org/10.1063/1.1768676 [4] Hills J. G. Encounters between binary and single stars and their effect on the dynamical evolution of stellar systems. The Astronomical Journal, 1975, 80, 809. http://dx.doi.org/10.1086/111815 [5] Heggie D. C. Binary Evolution in Stellar Dynamics, Monthly Notices of the Royal Astronomical Society, 1975, 173, 729. http://dx.doi.org/10.1093/mnras/173.3.729 [6] Fregeau J. M, Gurkan M. A, Joshi K. J, Rasio F. A. “Monte Carlo Simulations of Globular Cluster Evolution. III. Primordial Binary Interactions”, The Astrophysical Journal, 2003, 593, 772. http://dx.doi.org/10.1086/376593 [7] Cheng, Z, Li, Z, Li, X, et al. Exploring the Mass Segregation Effect of X-Ray Sources in Globular Clusters: The Case of 47 Tucanae, The Astrophysical Journal, 2019, 876, 59. http://dx.doi.org/10.3847/1538-4357/ab1593 [8] Bao, T, Li, Z, & Cheng, Z. Periodic X-ray sources in the massive globular cluster 47 Tucanae: Evidence for dynamically formed cataclysmic variables, Monthly Notices of the Royal Astronomical Society, 2023, 521, 4257. https://doi.org/10.1093/mnras/stad836 [9] Strader J, Chomiuk L, Maccarone T. J, et al. Two stellarmass black holes in the globular cluster M22, Nature, 2012, 490, 71. https://doi.org/10.1038/nature11490 [10] Chomiuk L, Strader J, Maccarone T. J, et al. A radio-selected black hole X-ray binary candidate in the milky way globular cluster M62, The Astrophysical Journal, 2013, 777, 69. http://dx.doi.org/10.1088/0004-637X/777/1/69 [11] Miller-Jones J. C. A, Strader J, Heinke C. O, et al. Deep radio imaging of 47 Tuc identifies the peculiar X-ray source X9 as a new black hole candidate, Monthly Notices of the Royal Astronomical Society, 2015, 453, 3918. https://doi.org/10.1093/mnras/stv1869 [12] Shishkovsky L, Strader J, Chomiuk L, et al. The MAVERIC Survey: A Red Straggler Binary with an Invisible Companion in the Galactic Globular Cluster M10, The Astrophysical Journal, 2018, 855, 55. http://dx.doi.org/10.3847/1538-4357/aaadb1 [13] Giesers B, Dreizler S, Husser T. -O, et al. A detached stellar-mass black hole candidate in the globular cluster NGC 3201, Monthly Notices of the Royal Astronomical Society, 2018, 475, L15. https://doi.org/10.1093/mnrasl/slx203 [1] Giesers B, Kamann S, Dreizler S, et al. A stellar census in globular clusters with MUSE: Binaries in NGC 3201, Astronomy & Astrophysics, 2019, 632, A3. https://doi.org/10.1051/0004-6361/201936203 [15] Kremer K, Ye C. S, Chatterjee S, Rodriguez C. L, Rasio F. A. The Role of “black hole burning” in the evolution of dense star clusters, Proceedings of the International Astronomical Union, 2020, 351, 357. https://doi.org/10.1017/S1743921319007269 [16] Breen P. G, Heggie D. C. Dynamical evolution of black hole subsystems in idealized star clusters, Monthly Notices of the Royal Astronomical Society, 2013, 432, 2779. https://doi.org/10.1093/mnras/stt628 [17] Kremer K, Ye C. S, Rui N. Z, Weatherford N. C, Chatterjee S, et al. Modeling Dense Star Clusters in the Milky Way and Beyond with the CMC Cluster Catalog, The Astrophysical Journal Supplement Series, 2020, 247, 48. https://doi.org/10.3847/1538-4365/ab7919 [18] Ye C. S, Fong W. fai, Kremer K, et al. On the Rate of Neutron Star Binary Mergers from Globular Clusters, The Astrophysical Journal Letters, 2020, 888, L10. https://doi.org/10.3847/2041-8213/ab5dc5 [19] Ye C. S, Kremer K, Chatterjee S, Rodriguez C. L, Rasio F. A. Millisecond Pulsars and Black Holes in Globular Clusters, The Astrophysical Journal, 2019, 877, 122. https://doi.org/10.3847/1538-4357/ab1b21 [20] Holley-Bockelmann K。Gultekin K。Shoemaker D。 Yunes N. Gravitational Wave Recoil and the Retention of Intermediate-Mass Black Holes, The Astrophysical Journal, 2008, 686, 829. https://doi.org/10.1086/591218 [21] Tremou E, Strader J, Chomiuk L, Shishkovsky L, et al. The MAVERIC Survey: Still No Evidence for Accreting Intermediate-mass Black Holes in Globular Clusters, The Astrophysical Journal, 2018, 862, 16. https://doi.org/10.3847/1538-4357/aac9b9 [22] Su Z, Li Z, Hou M, Zhang M, Cheng Z. The Galactic Center: A Study of Stellar Dynamics, Monthly Notices of the Royal Astronomical Society, 2022, 516, 1788. https://doi.org/10.1093/mnras/stac2345 [23] Kiziltan B, Baumgardt H, Loeb A. An intermediatemass black hole in the centre of the globular cluster 47 Tucanae, Nature, 2017, 542, 203. https://doi.org/10.1038/nature21361 [24] Mann C. R, Richer H, Heyl J, Anderson J, et al. A Multimass Velocity Dispersion Model of 47 Tucanae Indi- cates No Evidence for an Intermediate-mass Black Hole, The Astrophysical Journal, 2019, 875, 1. https://doi.org/10.3847/1538-4357/ab0e6d [25] Spitzer L. Equipartition and the Formation of Compact Nuclei in Spherical Stellar Systems, The Astrophysical Journal Letters, 1969, 158, L139. http://dx.doi.org/10.1086/180451 [26] Kulkarni S. R, Hut P, McMillan S. Stellar black holes in globular clusters, Nature, 1993, 364, 421. https://doi.org/10.1038/364421a0 [27] Sigurdsson S, Hernquist L. Primordial black holes in globular clusters, Nature, 1993, 364, 423. https://doi.org/10.1038/364423a0 [28] Morscher M, Umbreit S, Farr W. M, Rasio F. A. Retention of stellar-mass black holes in globular clusters, The Astrophysical Journal Letters, 2013, 763, L15. https://doi.org/10.1088/2041-8205/763/1/L15 [29] Wang L, Spurzem R, Aarseth S, et al. The DRAGON simulations: globular cluster evolution with a million stars, Monthly Notices of the Royal Astronomical Society, 2016, 458, 1450. https://doi.org/10.1093/mnras/stw274 [30] Morscher M, Pattabiraman B, Rodriguez C, Rasio F. A, Umbreit S. The dynamical evolution of stellar black holes in globular clusters, The Astrophysical Journal, 2015, 800, 9. https://doi.org/10.1088/0004-637X/800/1/9 [31] Baumgardt H, He C, Sweet S. M, Drinkwater M, et al. No evidence for intermediate-mass black holes in the globular clusters ω Cen and NGC 6624, Monthly Notices of the Royal Astronomical Society, 2019, 488, 5340. https://doi.org/10.1093/mnras/stz2060 [32] Zaris, J, Veske, D, Samsing, J, et al. Constraining Black Hole Populations in Globular Clusters Using Microlensing: Application to Omega Centauri, The Astrophysical Journal Letters, 2020, 894, L9. https://doi.org/10.3847/2041-8213/ab89a3 [33] Mackey A. D, Wilkinson M. I, Davies M. B, Gilmore G. F. The effect of stellar-mass black holes on the structural evolution of massive star clusters, Monthly Notices of the Royal Astronomical Society: Letters, 2007, 379, L40. https://doi.org/10.1111/j.1745-3933.2007.00330.x [34] Mackey A. D, Wilkinson M. I, Davies M. B, Gilmore G. F. Black holes and core expansion in massive star clusters, Monthly Notices of the Royal Astronomical Society, 2008, 386, 65. https://doi.org/10.1111/j.1365-2966.2008.13052.x [35] Giersz M, Askar A, Wang L, Hypki A, Leveque A, Spurzem R. MOCCA survey data base- I. Dissolutionof tidally filling star clusters harbouring black holesubsystems, Monthly Notices of the Royal AstronomicalSociety, 2019, 487, 2412. https://doi.org/10.1093/mnras/stz1460 [36] Arca Sedda, M, Askar, A, & Giersz, M. MOCCA-SurveyDatabase - I. Unravelling black hole subsystems inglobular clusters, Monthly Notices of the Royal AstronomicalSociety, 2018, 479, 4652. https://doi.org/10.1093/mnras/sty1859 [37] Kremer K, Rui N. Z, Weatherford N. C, et al. WhiteDwarf Subsystems in Core-Collapsed Globular Clusters, The Astrophysical Journal, 2021, 917, 28. https://doi.org/10.3847/1538-4357/ac06d4 [38] Weatherford, N. C, Chatterjee, S, Rodriguez, C. L, et al. Predicting Stellar-mass Black Hole Populations inGlobular Clusters, The Astrophysical Journal, 2018, 864, 13. https://doi.org/10.3847/1538-4357/aad63d [39] Askar A, Arca Sedda M, Giersz M. MOCCA-SURVEYDatabase I: Galactic globular clusters harbouring ablack hole subsystem, Monthly Notices of the RoyalAstronomical Society, 2018, 478, 1844. https://doi.org/10.1093/mnras/sty1186 [40] Weatherford N. C, Chatterjee S, Kremer K, Rasio F. A. A Dynamical Survey of Stellar-mass Black Holes in 50Milky Way Globular Clusters, The Astrophysical Journal, 2020, 898, 162. https://doi.org/10.3847/1538-4357/ab9f98 [41] Cheng, Z, Li, Z, Xu, X, et al. “The Galactic Center: AStudy of Stellar Dynamics and Black Hole Populations”, The Astrophysical Journal, 2018, 869, 52. https://doi.org/10.3847/1538-4357/aaeb1e [42] Heinke, C. O, Ivanov, M. G, Koch, E. W, et al. The Xrayemissivity of low-density stellar populations, Monthly Notices of the Royal Astronomical Society, 2020, 492, 5684. https://doi.org/10.1093/mnras/staa194 [43] Ibata, R. A, Bellazzini, M, Malhan, K, et al. Identificationof the long stellar stream of the prototypical mas- sive globular cluster ω Centauri, Nature Astronomy, 2019, 3, 667. https://doi.org/10.1038/s41550-019-0751-x [44] Cheng Z, Li Z, Wang W, Li X, Xu X. Exploring theMass Segregation Effect of X-Ray Sources in GlobularClusters. IV. Evidence of Black Hole Burning in ω Centauri, The Astrophysical Journal, 2020, 904, 198. https://doi.org/10.3847/1538-4357/abbdfc [45] Odenkirchen M, Grebel E. K, Rockosi C. M, Dehnen W, et al. Detection of Massive Tidal Tails around the GlobularCluster Palomar 5 with Sloan Digital Sky SurveyCommissioning Data, The Astrophysical Journal Letters, 2001, 548, L165. https://doi.org/10.1086/319095 [46] Gieles M, Erkal D, Antonini F, Balbinot E, PenarrubiaJ. A supra-massive population of stellar-mass blackholes in the globular cluster Palomar 5, Nature Astronomy, 2021, 5, 957. https://doi.org/10.1038/s41550-021-01392-2