摘要 | 利用森林碳存储功能抵消碳排放成为实现双碳目标的主要途经。本文以国内外文献及标准为参考, 对GEP核算、温室气体清单编制及林业碳汇项目三个维度下森林固碳计量方法及适用性进行了讨论。研究结果表明: (1) 基于编制目的: 温室气体清单重点评估区域森林固碳强度, 服务于碳减排政策; GEP核算通过经济手段体现森林固碳活动的生产和服务能力; 林业碳汇项目则通过人为固碳措施形成抵消产品参与碳减排。 (2) 基于价值层面; 温室气体清单编制体现森林的自然碳吸收能力, 即生态价值; 而GEP核算及林业碳汇项目通过结合碳价评估固碳强度或参与市场交易, 体现经济价值。 (3) 基于固碳计量方法层面: GEP核算方法学中主要依据碳通量数据计算固碳量, 包括固碳速率法和植物生产功能参数法; 温室气体清单编制以碳储量变化法为主, 辅以碳通量法; 林业碳汇项目则通过比较项目与基线情景的碳储量变化计量固碳量, 碳储量计算方法及参数选取与温室气体清单编制具备相似性。通过对三种核算体系进行对比分析, 可为森林固碳计量 方法的选取提供参考, 更好地推动气候变化应对和生态保护工作。 |
Abstract | The use of forest carbon storage function to offset carbon emissions has become the main way to achieve the dual carbon goal. Based on domestic and foreign literature and standards, this paper discusses the measurement methods and applicability of forest carbon sequestration in three dimensions: GEP accounting, greenhouse gas inventory compilation and forestry carbon sequestration projects. The results show that: (1) Based on the purpose of compilation: the greenhouse gas inventory focuses on assessing the carbon sequestration intensity of regional forests and serves the carbon emission reduction policy; GEP accounting reflects the production and service capacity of forest carbon sequestration activities through economic means; Forestry carbon sequestration projects form. offset products through artificial carbon sequestration measures to participate in carbon emission reduction. (2) based on the value level; Greenhouse gas inventories reflect the natural carbon absorption capacity of forests, i. e. , ecological values; The GEP accounting and forestry carbon sequestration projects reflect economic value by assessing carbon sequestration intensity or participating in market transactions in combination with carbon prices. (3) Based on the measurement method of carbon sequestration: the calculation of carbon sequestration in the GEP accounting methodology is mainly based on carbon flux data, including the carbon sequestration rate method and the plant production function parameter method. The compilation of greenhouse gas inventories is mainly based on the carbon stock change method, supplemented by the carbon flux method. In the forestry carbon sequestration project, the carbon sequestration is measured by comparing the carbon storage changes of the project with the baseline scenario, and the calculation method and parameter selection of carbon storage are similar to the compilation of greenhouse gas inventory. Through the comparative analysis of the three accounting systems, it can provide a reference for the selection of forest carbon sequestration measurement methods, and better promote climate change response and ecological protection. |
DOI | 10.48014/csdr.20240929001 |
文章类型 | 综 述 |
收稿日期 | 2024-09-29 |
接收日期 | 2024-11-15 |
出版日期 | 2024-12-28 |
关键词 | 固碳量, GEP核算, 温室气体清单编制, 林业碳汇项目 |
Keywords | Carbon sequestration, GEP accounting, greenhouse gas inventory development, forestry carbon sink project |
作者 | 王璇 |
Author | WANG Xuan |
所在单位 | 北京林业大学 环境科学与工程学院, 北京 100083 |
Company | College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China |
浏览量 | 129 |
下载量 | 34 |
参考文献 | [1] Rammig A. Tropical carbon sinks are saturating at different times on different continents[J]. Nature, 2020, 579(7797): 38-39. https://doi.org/10.1038/d41586-020-00423-8 [2] Young P J, Harper A B, Huntingford C, et al. The Montreal Protocol protects the terrestrial carbon sink[J]. Nature, 2021, 596(7872): 384-388. https://doi.org/10.1038/s41586-021-03737-3ISBN:1476-4687 [3] Joeri R, Michiel S, Malte M, et al. Zero emission targets as long-term global goals for climate protection[J]. Environmental Research Letters, 2015, 10(10): 105007. https://doi.org/10.1088/1748-9326/10/10/105007ISBN:1748-9326 [4] 胡鞍钢. 中国实现2030年前碳达峰目标及主要途径[J]. 北京工业大学学报(社会科学版), 2021, 21(03): 1-15. https://doi.org/10.12120/bjutskxb202103001 [5] 王灿, 张雅欣. 碳中和愿景的实现路径与政策体系[J]. 中国环境管理, 2020, 12(6): 58-64. https://doi.org/10.16868/j.cnki.1674-6252.2020.06.058 [6] 张小全, 武曙红, 何英, 等. 森林、林业活动与温室气体的减排增汇[J]. 林业科学, 2005(6): 153-159. https://doi.org/10.3321/j.issn:1001-7488.2005.06.026 [7] 毛江涛, 徐文婷, 谢宗强. 森林碳汇研究热点与趋势——— 基于知识图谱分析[J]. 生态学报, 2023, 43(19): 8241-8253. https://doi.org/10.20103/j.stxb.202209022507 [8] Pan Y, Birdsey R A, Fang J, et al. A large and persistent carbon sink in the worlds forests[J]. Science, 2011, 333(6045): 988-993. https://doi.org/10.1126/science.1201609 [9] Chaplin-Kramer R, Ramler I, Sharp R, et al. Degradation in carbon stocks near tropical forest edges[J]. Nature communications, 2015, 6(1): 1-6. https://doi.org/10.1038/ncomms10158 [10] Cta B, Xu Y C, Hao Z, et al. Projections of changes in ecosystem productivity under 1. 5°C and 2°C global warming[J]. Global and Planetary Change, 2021, 17: 1-12. https://doi.org/10.1016/j.gloplacha.2021.103588ISBN:0921-8181 [11] Sookun A, Boojhawon R, Rughooputh S. Mapping drivers of climate change: Carbon budget index for Mauritius[J]. Ecological Indicators, 2014, 46: 340-350. https://doi.org/10.1016/j.ecolind.2014.06.034 [12] Hu X, NæSS J S, IORDAN C M, et al. Recent global land cover dynamics and implications for soil erosion and carbon losses from deforestation[J]. Anthropocene, 2021, 34: 100291. https://doi.org/10.1016/j.ancene.2021.100291 [13] 李海奎. 碳中和愿景下森林碳汇评估方法和固碳潜力预估研究进展[J]. 中国地质调查, 2021, 8(4): 79-86. https://doi.org/10.19388/j.zgdzdc.2021.04.08 [14] Costanza R, dArge R, De Groot R, et al. The value of the worlds ecosystem services and natural capital[J]. Nature, 1997, 387(6630): 253-260. https://doi.org/10.1016/S0921-8009(98)00020-2 [15] 欧阳志云, 朱春全, 杨广斌, 等. 生态系统生产总值核算: 概念、核算方法与案例研究[J]. 生态学报, 2013, 33(21): 6747-6761. https://doi.org/10.5846/stxb201310092428 [16] 胡雄蛟, 宋昌素, 范馨悦, 等. 中国灌丛生态系统主要调节服务及价值评估[J]. 北京林业大学学报(社会科学版), 2021, 20(3): 58-64. https://doi.org/10.13931/j.cnki.bjfuss.2021073 [17] Yan Y, Liu X, Wen Y, et al. Quantitative analysis of the contributions of climatic and human factors to grassland productivity in northern China[J]. Ecological indicators, 2019, 103: 542-553. https://doi.org/10.1016/j.ecolind.2019.04.020 [18] 于淼, 金海珍, 李强, 等. 呈贡区生态系统生产总值(GEP)核算研究[J]. 西部林业科学, 2020, 49(3): 41-48+55. https://doi.org/CNKI:SUN:YNLK.0.2020-03-008 [19] 白玛卓嘎, 肖燚, 欧阳志云, 等. 甘孜藏族自治州生态系统生产总值核算研究[J]. 生态学报, 2017, 37(19): 6302-6312. https://doi.org/10.5846/stxb201607011362 [20] Wang Q, Zheng H, Zhu X, et al. Primary estimation ofChinese terrestrial carbon sequestration during 2001—2010[J]. Science Bulletin, 2015, 60(6): 577-590. https://doi.org/10.1007/s11434-015-0736-9 [21] 周艳莲, 居为民, 柳艺博. 1981—2019年全球陆地生态系统碳通量变化特征及其驱动因子[J]. 大气科学学报, 2022, 45(3): 332-344. https://doi.org/10.13878/j.cnki.dqkxxb.20220403007 [22] 吴之见, 杜思敏, 黄云, 等. 基于生态系统生产总值核算的生态保护成效评估———以赣南地区为例[J/OL]. 生态学报, 2022,(16): 1-14. https://doi.org/10.5846/stxb202104181007 [23] 马国霞, 於方, 王金南, 等. 中国2015年陆地生态系统生产总值核算研究[J]. 中国环境科学, 2017, 37(4): 1474-1482. [24] 于天飞, 夏恩龙. 基于碳中和愿景的绿地碳汇价值实现过程研究[J]. 自然保护地, 2022, 2(1): 74-81. https://doi.org/10.12335/2096-8981.2022010501 [25] 蔡博峰. 中国城市温室气体清单研究[J]. 中国人口·资源与环境, 2012, 22(1): 21-27. https://doi.org/10.3969/j.issn.1002-2104.2012.01.005 [26] 蔡博峰, 朱松丽, 于胜民, 等. 《IPCC 2006年国家温室气体清单指南2019修订版》解读[J]. 环境工程, 2019, 37(8): 1-11. https://doi.org/10.13205/j.hjgc.201908001 [27] Lin B, Ge J. How does institutional freedom affect globalforest carbon sinks? The analysis of transfer paths[J]. Resources, Conservation and Recycling, 2020, 161: 104982. https://doi.org/10.1016/j.resconrec.2020.104982 [28] 靳晓婷, 赵明阳, 杨洁, 等. 区县层级温室气体清单核算方法及排放特征分析———以北京市怀柔区为例[J/OL]. 环境保护科学, 1-11. https://doi.org/10.16803/j.cnki.issn.1004-6216.202310019 [29] 方精云, 黄耀, 朱江玲, 等. 森林生态系统碳收支及其影响机制[J]. 中国基础科学, 2015, 17(3): 20-25. https://doi.org/10.3969/j.issn.1009-2412.2015.03.004 [30] Zhang C, JU W, Chen J M, et al. Disturbance-inducedreduction of biomass carbon sinks of China’s forests inrecent years[J]. Environmental Research Letters, 2015, 10(11): 114021. https://doi.org/10.1088/1748-9326/10/11/114021 [31] 张修玉, 许振成, 胡习邦, 等. 基于IPCC的区域森林碳汇潜力评估[C]//. 2010中国环境科学学会学术年会论文集(第一卷). , 2010: 650-656. [32] Businger J A, Oncley S P. Flux measurement with conditionalsampling[J]. Journal of Atmospheric and OceanicTechnology, 1990, 7(2): 349-352. https://doi.org/10.2525/ecb1963.33.79 [33] Duvert C, Hutley L B, Beringer J, et al. Net landscapecarbon balance of a tropical savanna: Relative importanceof fire and aquatic export in offsetting terrestrialproduction[J]. Global Change Biology, 2020, 26(10): 5899-5913. https://doi.org/10.1111/GCB.15287 [34] 毕君, 王超, 尤海舟. 基于温室气体清单的河北省森林碳汇量研究[J]. 生态科学, 2016, 35(4): 113-118. https://doi.org/10.14108/j.cnki.1008-8873.2016.04.016 [35] 马彩虹, 赵晶, 谭晨晨. 基于IPCC方法的湖南省温室气体排放核算及动态分析[J]. 长江流域资源与环境, 2015, 24(10): 1786-1792. https://doi.org/10.11870/cjlyzyyhj201510022 [36] Jung M. The role of forestry projects in the clean developmentmechanism[J]. Environmental Science & Policy, 2005, 8(2): 87-104. https://doi.org/10.1016/j.envsci.2005.01.001 [37] 武曙红. 我国CDM 造林和再造林项目方法学及案例研究[D]. 北京林业大学, 2006. [38] Dechezleprêtre A, Glachant M, Ménière Y. Technologytransfer by CDM projects: A comparison of Brazil, China, India and Mexico[J]. Energy policy, 2009, 37(2): 703-711. https://doi.org/10.1016/j.enpol.2008.10.007 [39] 孙清芳, 马燕娥, 刘强. 基于CDM 机制对我国林业碳汇项目发展的探析[J]. 林业资源管理, 2017(05): 125-128. https://doi.org/10.13466/j.cnki.lyzygl.2017.05.021 [40] 曹先磊, 程毅明, 吴伟光. 碳中和目标背景下CCER林业碳汇项目开发优先序研究[J]. 统计与信息论坛, 2022, 37(5): 52-63. https://doi.org/10.3969/j.issn.1007-3116.2022.05.005 [41] 刘欢, 武曙红, 于天飞. 森林保护碳汇项目方法学研究[J]. 世界林业研究, 2018, 31(5): 7-12. https://doi.org/10.13348/j.cnki.sjlyyj.2018.0056.y [42] Zhang Y Q, Ulgitai S, DONG X B, et al. Using ecologicalcriteria to develop CDM projects in Zhifanggou Valley, Loess Plateau, China-ScienceDirect[J]. Agriculture, Ecosystems & Environment, 2011, 141(3-4): 410-416. https://doi.org/10.1016/j.agee.2011.04.005 [43] Brown S, Lugo A E. Biomass of tropical forests: a newestimate based on forest volumes[J]. Science, 1984, 223(4642): 1290-1293. https://doi.org/10.1126/science.223.4642.1290 [44] Djomo A N, Ibrahima A, Saborowski J, et al. Allometricequations for biomass estimations in Cameroon and panmoist tropical equations including biomass data fromAfrica[J]. Forest Ecology and Management, 2010, 260(10): 1873-1885. https://doi.org/10.1016/j.foreco.2010.08.034 [45] 张逸如, 刘晓彤, 高文强, 等. 天然林保护工程区近20年森林植被碳储量动态及碳汇(源)特征[J]. 生态学报, 2021, 41(13): 5093-5105. https://doi.org/10.5846/stxb202101200215 [46] Dulamsuren C, Klinge M, Degener J, et al. Carbon pooldensities and a first estimate of the total carbon pool inthe Mongolian forest-steppe[J]. Global Change Biology, 2016, 22(2): 830-844. https://doi.org/10.1111/gcb.13127 [47] 陈春阳, 杨风亭, 王绍强. CDM 造林再造林项目方法学的实证研究———以千烟洲生态试验站为例[J]. 林业科技, 2011, 36(5): 1-5. https://doi.org/10.3969/j.issn.1001-9499.2011.05.002 [48] 张治军, 张小全, 朱建华, 等. 清洁发展机制(CDM)造林再造林项目碳汇成本研究———以CDM广西珠江流域治理再造林项目为例[J]. 气候变化研究进展, 2009, 5(6): 348-356. https://doi.org/10.3969/j.issn.1673-1719.2009.06.006 [49] Wang G, Guan D, Xiao L, et al. Forest biomass-carbonvariation affected by the climatic and topographic factorsin Pearl River Delta, South China[J]. Journal ofEnvironmental Management, 2019, 232(FEB. 15): 781-788. https://doi.org/10.1016/j.jenvman.2018.11.130 [50] 李文武, 李峰, 李凤梅. 太平山林场森林碳汇计量及碳汇价值评价[J]. 现代农村科技, 2016(3): 53-54. https://doi.org/10.3969/j.issn.1674-5329.2016.03.048 [51] 龚荣发, 何勇, 黄薇薇, 等. 川西北CDM碳汇项目碳汇价值潜力估算[J]. 林业经济, 2015, 37(5): 38-41+75. https://doi.org/10.13843/j.cnki.lyjj.2015.05.008 [52] 张信, 李峰, 吴建国. 阿城市红星林场天然林不同森林类型碳汇计量[J]. 现代农村科技, 2017(6): 76. https://doi.org/CNKI:SUN:HBNK.0.2017-06-069 [53] 吴建国, 李峰, 张信. 宾县新甸林场不同森林类型碳汇计量[J]. 现代农村科技, 2017(6): 75. https://doi.org/CNKI:SUN:HBNK.0.2017-06-068 [54] Tian X, Sohngen B, Kim J B, et al. Global climatechange impacts on forests and markets[J]. EnvironmentalResearch Letters, 2016, 11(3): 035011. https://doi.org/10.1016/j.forpol.2016.06.011 [55] 邓茗文. 武曙红: 林业碳汇项目和碳金融产品开发面临的风险与挑战[J]. 可持续发展经济导刊, 2023(06): 24-27. [56] 曹先磊, 程宝栋. 中国林业碳汇核证减排量项目市场发展的现状、问题与建议[J]. 环境保护, 2018, 46(15): 27-34. |
引用本文 | 王璇. 基于不同核算情景下的森林固碳计量研究进展[J]. 中国可持续发展评论, 2024, 3(4): 134-144. |
Citation | WANG Xuan. Research progress on forest carbon sequestration measurement based on different accounting scenarios[J]. Chinese Sustainable Development Review, 2024, 3(4): 134-144. |