参考文献
[1] ABAS N, KALAIR A, KHAN N. Review of fossil fuels and future energy technologies[J]. Futures, 2015, 69: 31-49. https://doi.org/10.1016/j.futures.2015.03.003 [2] IEA. SDG7: Data and Projections[EB/OL].(2022-04)[2023-04-06]. https://www.iea.org/reports/sdg7-data-and-projections [3] 国家统计局. 中华人民共和国2022年国民经济和社会发展统计公报[EB/OL].(2023-02-28)[2023-04-06]. http://www.stats.gov.cn/sj/zxfb/202302/t20230228_1919011.html [4] NOAA. State of the Climate: Global Climate Report for 2022[EB/OL].(2023-01-12)[2023-04-06]. https://www.ncei.noaa.gov/access/monitoring/monthlyreport/global/202213 [5] NOAA. Carbon dioxide now more than 50% higher than preindustrial levels 2022[EB/OL].(2022-05-03)[2023-04-06]. https://www.noaa.gov/news-release/carbon-dioxidenow-more-than-50-higher-than-pre-industrial-levels [6] WMO. Provisional State of the Global Climate in 2022 [EB/OL].(2022-09-01)[2023-04-06]. https://public.wmo.int/en/our-mandate/climate/wmostatement-state-of-global-climate [7] MYSIAK J, SURMINSKI S, THIEKEN A, et al. Brief communication: Sendai framework for disaster risk reduction- success or warning sign for Paris? [J]. Natural Hazards and Earth System Sciences, 2016, 16(10): 2189-2193. https://doi.org/10.5194/nhess-16-2189-2016 [8] FIELD C B, BARROS V R. Climate change 2014-Impacts, adaptation and vulnerability: Regional aspects [M]. Cambridge University Press, 2014. [9] SABELSTRöM N, HAYASHI M, YOKOYAMA Y, et al. XRD In Situ Observation of Carbothermic Reduction of Magnetite Powder in Microwave Electric and Magnetic Fields[J]. Steel Research International, 2013, 84(10): 975-981. https://doi.org/10.1002/srin.201200307 [10] DU Y. Advances in carbon-based microwave absorbing materials[Z]. MDPI. 2022: 1359. https://doi.org/10.3390/ma15041359 [11] FUKUSHIMA J, TAKIZAWA H. In situ spectroscopic analysis of the carbothermal reduction process of iron oxides during microwave irradiation[J]. Metals, 2018, 8(1): 49. https://doi.org/10.3390/met8010049 [12] MASKAN M. Microwave/air and microwave finish drying of banana[J]. Journal of Food Engineering, 2000, 44(2): 71-78. https://doi.org/10.1016/S0260-8774(99)00167-3 [13] MEREDITH R J. Engineers' handbook of industrial microwave heating[M]. Iet, 1998. [14] METAXAS A A, MEREDITH R J. Industrial microwave heating[M]. IET, 1983. [15] ISHIZAKI K, NAGATA K, HAYASHI T. Production of pig iron from magnetite ore-coal composite pellets by microwave heating[J]. ISIJ International, 2006, 46(10): 1403-9. https://doi.org/10.2355/isijinternational.46.1403 [16] CHUN T, LONG H, DI Z, et al. Influence of microwave heating on the microstructures of iron ore pellets with coal during reduction[J]. Ironmaking & Steelmaking, 2017, 44(7): 486-91. https://doi.org/10.1080/03019233.2016.1215960 [17] ZHONG S, GEOTZMAN H E, BLEIFUSS R L. Reduction of iron ore with coal by microwave heating[J]. Mining, Metallurgy & Exploration, 1996, 13(4): 174-8. [18] ISHIZAKI K, NAGATA K. Selectivity of microwave energy consumption in the reduction of Fe3O4 with carbon black in mixed powder[J]. ISIJ International, 2007, 47(6): 811-6. https://doi.org/10.2355/isijinternational.47.811 [19] HE Z J, JIN Y L, ZHANG H. Experiment Study on the High-Phosphorus Hematite Carbothermal Reduction in Microwave Field; proceedings of the Advanced Materials Research, F, 2011[C]. Trans Tech Publ. https://doi.org/10.4028/www.scientific.net/AMR.291-294.1317 [20] HARA K, HAYASHI M, SATO M, et al. Pig iron making by focused microwave beams with 20 kW at 2. 45 GHz[J]. ISIJ International, 2012, 52(12): 2149-57. https://doi.org/10.2355/isijinternational.52.2149 [21] HOTTA M, HAYASHI M, NISHIKATA A, et al. Complex permittivity and permeability of SiO2 and Fe3O4 powders in microwave frequency range between 0. 2 and 13. 5 GHz[J]. ISIJ International, 2009, 49(9): 1443-8. https://doi.org/10.2355/isijinternational.49.1443 [22] WALKIEWICZ J W, MCGILL S, MOYER L. Improved grindability of iron ores using microwave energy[J]. MRS Online Proceedings Library, 1988, 124(1): 297-302. [23] KUMAR P, SAHOO B, DE S, et al. Iron ore grindability improvement by microwave pre-treatment[J]. Journal of Industrial and Engineering Chemistry, 2010, 16(5): 805-12. https://doi.org/10.1016/j.jiec.2010.05.008 [24] JAVAD KOLEINI S, BARANI K, REZAEI B. The effect of microwave treatment on dry grinding kinetics of iron ore[J]. Mineral Processing and Extractive Metallurgy Review, 2012, 33(3): 159-69. https://doi.org/10.1080/08827508.2011.562947 [25] OMRAN M, FABRITIUS T, MATTILA R. Thermally assisted liberation of high phosphorus oolitic iron ore: a comparison between microwave and conventional furnaces[J]. Powder Technology, 2015, 269: 7-14. https://doi.org/10.1016/j.powtec.2014.08.073 [26] XU B J, CHEN K, HUANG C J. Microwave Heating in Iron Ore Magnetization Roasting the Current Status; proceedings of the Applied Mechanics and Materials, F, 2013[C]. Trans Tech Publ. https://doi.org/10.4028/www.scientific.net/AMM.303-306.2611 [27] BARANI K, KOLEINI S J, REZAEI B. Magnetic properties of an iron ore sample after microwave heating[J]. Separation and Purification Technology, 2011, 76(3): 331-6. https://doi.org/10.1016/j.seppur.2010.11.001 [28] OMRAN M, FABRITIUS T, ELMAHDY A M, et al. Effect of microwave pre-treatment on the magnetic properties of iron ore and its implications on magnetic separation[J]. Separation and Purification Technology, 2014, 136: 223-32. https://doi.org/10.1016/j.seppur.2014.09.011 [29] RATH S S, DHAWAN N, RAO D, et al. Beneficiation studies of a difficult to treat iron ore using conventional and microwave roasting[J]. Powder Technology, 2016, 301: 1016-24. https://doi.org/10.1016/j.powtec.2016.07.044 [30] YU J, HAN Y, LI Y, et al. Recent advances in magnetization roasting of refractory iron ores: A technological review in the past decade[J]. Mineral Processing and Extractive Metallurgy Review, 2020, 41(5): 349-59. https://doi.org/10.1080/08827508.2019.1634565 [31] GUO Q, SUN D W, CHENG J H, et al. Microwave processing techniques and their recent applications in the food industry[J]. Trends in Food Science & Technology, 2017, 67: 236-47. https://doi.org/10.1016/j.tifs.2017.07.007 [32] CHANDRASEKARAN S, RAMANATHAN S, BASAK T. Microwave food processing—A review[J]. Food Research International, 2013, 52(1): 243-61. https://doi.org/10.1016/j.foodres.2013.02.033 [33] SALAZAR-GONZáLEZ C, MARTíN-GONZáLEZ S, FERNANDA M, et al. Recent studies related to microwave processing of fluid foods[J]. Food and Bioprocess Technology, 2012, 5(1): 31-46. [34] PóŁTORAK A, WYRWISZ J, MOCZKOWSKA M, et al. Microwave vs. convection heating of bovine Gluteus Medius muscle: impact on selected physical properties of final product and cooking yield[J]. International Journal of Food Science & Technology, 2015, 50(4): 958-65. https://doi.org/10.1111/ijfs.12729 [35] XU Y, CARTIER A, OBIELODAN M, et al. Nutritional and anti-nutritional composition, and in vitro protein digestibility of Kabuli chickpea(Cicer arietinum L. )as affected by differential processing methods[J]. Journal of Food Measurement and Characterization, 2016, 10(3): 625-33. [36] JAMES C, BARLOW K E, JAMES S J, et al. The influence of processing and product factors on the quality of microwave pre-cooked bacon[J]. Journal of Food Engineering, 2006, 77(4): 835-43. https://doi.org/10.1016/j.jfoodeng.2005.08.010 [37] COCCI E, SACCHETTI G, VALLICELLI M, et al. Spaghetti cooking by microwave oven: Cooking kinetics and product quality[J]. Journal of Food Engineering, 2008, 85(4): 537-46. https://doi.org/10.1016/j.jfoodeng.2007.08.013 [38] GONZALEZ Z, PEREZ E. Evaluation of lentil starches modified by microwave irradiation and extrusion cooking[J]. Food Research International, 2002, 35(5): 415-20. https://doi.org/10.1016/S0963-9969(01)00135-1 [39] OZKOC S O, SUMNU G, SAHIN S, et al. Investigation of physicochemical properties of breads baked in microwave and infrared-microwave combination ovens during storage[J]. European Food Research and Technology, 2009, 228(6): 883-93. [40] CHANDRASEKARAN S, RAMANATHAN S, BASAK T. Microwave food processing—A review[J]. Food Research International, 2013, 52(1): 243-61. https://doi.org/10.1016/j.foodres.2013.02.033 [41] WOJDYŁO A, FIGIEL A, LECH K, et al. Effect of convective and vacuum-microwave drying on the bioactive compounds, color, and antioxidant capacity of sour cherries[J]. Food and Bioprocess Technology, 2014, 7(3): 829-41. [42] AGHILINATEGH N, RAFIEE S, HOSSEINPOUR S, et al. Optimization of intermittent microwave-convective drying using response surface methodology[J]. Food Science & Nutrition, 2015, 3(4): 331-41. https://doi.org/10.1002/fsn3.224 [43] HORUZ E, MASKAN M. Hot air and microwave drying of pomegranate(Punica granatum L. )arils[J]. Journal of Food Science and Technology, 2015, 52(1): 285-93. [44] ZIELINSKA M, MICHALSKA A. Microwave-assisted drying of blueberry(Vaccinium corymbosum L. )fruits: Drying kinetics, polyphenols, anthocyanins, antioxidant capacity, colour and texture[J]. Food Chemistry, 2016, 212: 671-80. https://doi.org/10.1016/j.foodchem.2016.06.003 [45] SZADZIN'SKA J, ŁECHTAN'SKA J, KOWALSKI S J, et al. The effect of high power airborne ultrasound and microwaves on convective drying effectiveness and quality of green pepper[J]. Ultrasonics Sonochemistry, 2017, 34: 531-9. https://doi.org/10.1016/j.ultsonch.2016.06.030 [46] DUAN X, ZHANG M, MUJUMDAR A, et al. Trends in microwave-assisted freeze drying of foods[J]. Drying Technology, 2010, 28(4): 444-53. https://doi.org/10.1080/07373931003609666 [47] WANG Y, ZHANG M, MUJUMDAR A S, et al. Microwave- assisted pulse-spouted bed freeze-drying of stem lettuce slices—Effect on product quality[J]. Food and Bioprocess Technology, 2013, 6: 3530-43. [48] BHADOURIA V S, AKHTAR M J, MUNSHI P. Lowlevel radioactive waste management using microwave technology[J]. Progress in Nuclear Energy, 2021, 131: 103569. https://doi.org/10.1016/j.pnucene.2020.103569 [49] ZHANG S, SHU X, CHEN S, et al. Rapid immobilization of simulated radioactive soil waste by microwave sintering[J]. Journal of hazardous materials, 2017, 337: 20-6. https://doi.org/10.1016/j.jhazmat.2017.05.003 [50] KOMATSU F, TAKUSAGAWA A, WADA R, et al. Application of microwave treatment technology for radioactive wastes[J]. Waste Management, 1990, 10(3): 211-5. https://doi.org/10.1016/0956-053X(90)90043-K [51] TU H, DUAN T, DING Y, et al. Preparation of zirconmatrix material for dealing with high-level radioactive waste with microwave[J]. Materials Letters, 2014, 131: 171-3. https://doi.org/10.1016/j.matlet.2014.05.195 [52] NAM S, UM W. Decontamination of radioactive metal wastes using underwater microwave plasma[J]. Journal of Environmental Chemical Engineering, 2022, 10(1): 107090. https://doi.org/10.1016/j.jece.2021.107090 [53] BHADOURIA V S, RAY D, AKHTAR M J, et al. An approach towards enhancing the role of microwave heating in low-level radioactive waste management[J]. Progress in Nuclear Energy, 2022, 147: 104180. https://doi.org/10.1016/j.pnucene.2022.104180 [54] UNDRI A, MEINI S, ROSI L, et al. Microwave pyrolysis of polymeric materials: Waste tires treatment and characterization of the value-added products[J]. Journal of Analytical and Applied Pyrolysis, 2013, 103: 149-58. https://doi.org/10.1016/j.jaap.2012.11.011 [55] FORMELA K, HEJNA A, ZEDLER L, et al. Microwave treatment in waste rubber recycling-recent advances and limitations[J]. Express Polymer Letters, 2019, 13(6): 565-88. http://dx.doi.org/10.3144/expresspolymlett.2019.48 [56] AOUDIA K, AZEM S, HOCINE N A, et al. Recycling of waste tire rubber: Microwave devulcanization and incorporation in a thermoset resin[J]. Waste Management, 2017, 60: 471-81. https://doi.org/10.1016/j.wasman.2016.10.051 [57] LUO M, LIAO X, LIAO S, et al. Mechanical and dynamic mechanical properties of natural rubber blended with waste rubber powder modified by both microwave and sol-gel method[J]. Journal of Applied Polymer Science, 2013, 129(4): 2313-20. https://doi.org/10.1002/app.38954 [58] ZANCHET A, CARLI L, GIOVANELA M, et al. Use of styrene butadiene rubber industrial waste devulcanized by microwave in rubber composites for automotive application[J]. Materials & Design, 2012, 39: 437-43. https://doi.org/10.1016/j.matdes.2012.03.014 [59] DE SOUSA F D, SCURACCHIO C H, HU G-H, et al. Devulcanization of waste tire rubber by microwaves[J]. Polymer Degradation and Stability, 2017, 138: 169-81. https://doi.org/10.1016/j.polymdegradstab.2017.03.008 [60] ZHANG Y, KE C, FU W, et al. Simulation of microwave- assisted gasification of biomass: A review[J]. Renewable Energy, 2020, 154: 488-96. https://doi.org/10.1016/j.jhazmat.2017.05.003 [61] SINGH S, NECULAES V, LISSIANSKI V, et al. Microwave assisted coal conversion[J]. Fuel, 2015, 140: 495-501. https://doi.org/10.1016/j.fuel.2014.09.108 [62] HUNT J, FERRARI A, LITA A, et al. Microwave-specific enhancement of the carbon-carbon dioxide(Boudouard)reaction[J]. The Journal of Physical Chemistry C, 2013, 117(51): 26871-80. https://doi.org/10.1021/jp4076965 [63] DAI H, ZHAO H, CHEN S, et al. A microwave-assisted boudouard reaction: a highly effective reduction of the greenhouse gas CO2 to useful CO feedstock with semi-coke[J]. Molecules, 2021, 26(6): 1507. https://doi.org/10.3390/molecules26061507 [64] BELLER M. Catalytic carbonylation reactions[M]. Springer, 2006. [65] RATNASAMY C, WAGNER J P. Water gas shift catalysis[J]. Catalysis Reviews, 2009, 51(3): 325-440. https://doi.org/10.1080/01614940903048661 [66] FAKHOURI M, RAMASWAMY H. Temperature uniformity of microwave heated foods as influenced by product type and composition[J]. Food Research International, 1993, 26(2): 89-95. https://doi.org/10.1016/0963-9969(93)90062-N [67] GOKSOY E, JAMES C, JAMES S. Non-uniformity of surface temperatures after microwave heating of poultry meat[J]. Journal of Microwave Power and Electromagnetic Energy, 1999, 34(3): 149-60. https://doi.org/10.1080/08327823.1999.11688400 [68] RYYNäNEN S, OHLSSON T. Microwave heating uniformity of ready meals as affected by placement, composition, and geometry[J]. Journal of Food Science, 1996, 61(3): 620-4. https://doi.org/10.1111/j.1365-2621.1996.tb13171.x [69] FUNEBO T, OHLSSON T. Microwave-assisted air dehydration of apple and mushroom[J]. Journal of Food Engineering, 1998, 38(3): 353-67. https://doi.org/10.1016/S0260-8774(98)00131-9 [70] CHEN Z, LI Y, WANG L, et al. Evaluation of the possible non-thermal effect of microwave radiation on the inactivation of wheat germ lipase[J]. Journal of Food Process Engineering, 2017, 40(4): e12506. https://doi.org/10.1111/jfpe.12506 [71] Jiann-Yang Hwang, Xiaodi Huang. Method for reducing iron oxide and producing syngas. US8540794B2[P]. 2013-09-24. [72] XU LINBO. Microwave iron making technology and microwave iron making shaft furnace thereof. CN110453026A[P]. 2019-11-15. [73] XU LINBO. New microwave ironmaking process and equipment thereof. CN110387446A[P]. 2019-10-29.