2024年4月29日 星期一
北京市PM2.5的时空分布特征及影响因素
Temporal and Spatial Distribution Characteristics and Influencing Factors of PM2.5 in Beijing
摘要

发展中国家快速的城镇化和工业化给生态环境带来极大的负面影响, 尤其是造成严重的空气污染, 成为增加环境健康风险的重要因素。北京是极具代表性的特大城市, 雾霾问题受到广泛的关注, 对雾霾的精准监测和分析至关重要。但是, 雾霾污染兼具长期性和复杂性的特点, 目前北京空气污染程度的时空分布差异及对其影响因素的解释并不充分。因此, 我们选取13个位于北京的空气质量监测站点的PM2. 5浓度, 揭示其不同时间尺度下的空间异质性; 进而使用聚类分析和多元回归分析, 通过多种自然条件和社会经济条件数据拟合PM2. 5的浓度以帮助解释其影响因素。研究结果表明, 北京市PM2. 5浓度存在明显的季节差异, 具体表现为: 冬季>秋季>春季>夏季。PM2. 5浓度分布在不同季节的空间分布特征基本稳定, 大体上是西南部PM2. 5浓度高, 东北部PM2. 5浓度低。拟合的PM2. 5日均浓度和监测站点的数据高度吻合, 说明气象、人口、道路、建筑和NDVI均对PM2. 5的浓度变化具有解释力。

Abstract

The rapid urbanization and industrialization in developing countries has had a significant negative impact on the ecological environment, especially causing serious air pollution, which has become an important factor in increasing environmental health risks. Beijing is a highly representative megacity where the smog problem has received widespread attention, so it is very important to accurately monitor and analyze the smog. However, smog pollution has characteristics of long-term and complexity, and the current differences in the temporal and spatial distribution of air pollution levels in Beijing and the explanation of influencing factors are not sufficient. Therefore, we select the PM2. 5 concentrations from 13 stations located in Beijing for air quality monitoring to reveal their spatial heterogeneity at different time scales. Then, cluster analysis and multiple regression analysis are used to fit the concentrations of PM2. 5 through a variety of natural and socio-economic conditions to help explain their influencing factors. The results show that there are obvious seasonal differences in the concentrations of PM2. 5, specifically: winter > autumn > spring > summer. The spatial distribution of PM2. 5 concentration is generally stable across seasons, with high PM2. 5 concentration in the southwest and low PM2. 5 concentration in the northeast. The fitted daily average concentration of PM2. 5 is highly consistent with the data from monitoring stations, indicating that meteorology, population, roads, buildings and NDVI all have explanatory power on the variation of PM2. 5 concentration.  

DOI10.48014/csdr.20221129001
文章类型研究性论文
收稿日期2022-11-29
接收日期2022-12-27
出版日期2022-12-28
关键词空气质量, 空间特征, 影响因素, 北京
KeywordsAir quality, spatial characteristics, influencing factors, Beijing
作者张艳杰
AuthorZhang Yanjie
所在单位甘肃省天水市清水县自然资源局, 天水 741499
CompanyNatural Resources Bureau of Qingshui County, Tianshui 741499, China
浏览量279
下载量142
参考文献[1] 闫超, 吴琼, 隋建利. 改革开放40年中国城镇化与城乡收入差异的路径演化识别[J]. 经济问题探索, 2020, 451(02): 61-73.
[2] 郑得坤, 李凌. 城镇化、工业化与居民消费: 内在机理与实证研究———来自世界162个国家(地区)的经验证据[J]. 上海经济研究, 2020, 377(02): 78-88.
https://doi.org/10.19626/j.cnki.cn31-1163/f.2020.02.007
[3] 肖金成. 中国城镇化四十年[J]. 中国金融, 2018, 888(18): 33-35.
[4] 徐梦佳, 刘冬. 城镇化进程中生态环境管治的国际经验与启示[J]. 中国环境管理, 2019, 11(01): 123-127, 31.
https://doi.org/10.16868/j.cnki.1674-6252.2019.01.123
[5] 刘海猛, 方创琳, 李咏红. 城镇化与生态环境“耦合魔方”的基本概念及框架[J]. 地理学报, 2019, 74(08): 1489-1507.
https://doi.org/10.11821/dlxb201908001
[6] 史建军. 城镇化进程中生态环境响应的时空分异及影响因素研究[J]. 干旱区资源与环境, 2019, 33(05): 60-66.
https://doi.org/10.13448/j.cnki.jalre.2019.139
[7] 崔阳阳, 张熠晨, 沈岩, 等. 京津冀及周边民用燃煤对空气质量的影响及控制对策[J]. 环境保护, 2022, 50(24): 27-31.
https://doi.org/10.14026/j.cnki.0253-9705.2022.24.013
[8] 赵伟, 刘昊铮, 蒲海霞. 中国“十三五”期间空气质量时空演变特征及社会经济驱动力[J]. 西南大学学报(自然科学版), 2022, 44(09): 99-109.
https://doi.org/10.13718/j.cnki.xdzk.2022.09.011
[9] 曹彩虹, 韩立岩. 雾霾带来的社会健康成本估算[J]. 统计研究, 2015, 32(07): 19-23.
https://doi.org/10.19343/j.cnki.11-1302/c.2015.07.003
[10] 姜绵峰, 叶春明, 盛真真, 等. 上海市雾霾健康经济损失风险评估[J]. 生态科学, 2017, 36(03): 90-97.
https://doi.org/10.14108/j.cnki.1008-8873.2017.03.013
[11] Most polluted country in the world(historical data). IQAir. 2022.
[12] SHI C, YUAN R, WU B, et al. Meteorological conditionsconducive to PM2. 5 pollution in winter 2016/2017in the Western Yangtze River Delta, China[J]. Scienceof The Total Environment, 2018, 642: 1221-1232.
https://doi.org/10.1016/j.scitotenv.2018.06.137
[13] XU X, ZHANG H, CHEN J, et al. Six sources mainlycontributing to the haze episodes and health risk assessmentof PM2. 5 at Beijing suburb in winter 2016[J]. Ecotoxicology and Environmental Safety, 2018, 166: 146-156.
https://doi.org/10.1016/j.ecoenv.2018.09.069
[14] LIAO T, WANG S, AI J, et al. Heavy pollution episodes, transport pathways and potential sources ofPM2. 5 during the winter of 2013 in Chengdu(China)[J]. Science of The Total Environment, 2017, 584-585: 1056-1065.
https://doi.org/10.1016/j.scitotenv.2017.01.160
[15] 万安伦. 北京城市地位与功能的四次跃升[J]. 北京联合大学学报(人文社会科学版), 2014, 12(03): 41-46.
https://doi.org/10.16255/j.cnki.11-5117c.2014.03.007
[16] 岳鸿飞, 施川. “煤改气”工程绿色净效益评估及政策优化措施[J]. 河北经贸大学学报, 2019, 40(05): 86-91.
https://doi.org/10.14178/j.cnki.issn1007-2101.2019.05.011
[17] 京津冀地区关停10家重点污染企业 力保奥运会期间空气质量[J]. 环境保护, 2008, 390(04): 51.
[18] 王会芝, 杜林蔚, 吕建华. 城市群雾霾污染的空间分异及动态关联研究———基于京津冀城市群的实证分析[J]. 中国环境管理, 2020, 12(01): 80-86.
https://doi.org/10.16868/j.cnki.1674-6252.2020.01.080
[19] 王郭臣, 王东启, 陈振楼. 北京冬季严重污染过程的PM2. 5 污染特征和输送路径及潜在源区[J]. 中国环境科学, 2016, 36(07): 1931-1937.
[20] 周磊, 武建军, 贾瑞静, 等. 京津冀PM2. 5 时空分布特征及其污染风险因素[J]. 环境科学研究, 2016, 29(04): 483-493.
https://doi.org/10.13198/j.issn.1001-6929.2016.04.03
[21] 陈添. 气象条件对北京市空气质量的影响[J]. 环境保护, 2006(10): 46-49.
[22] 薛亦峰, 闫静, 魏小强. 燃煤控制对北京市空气质量的改善分析[J]. 环境科学研究, 2014, 27(03): 253-258.
https://doi.org/10.13198/j.issn.1001-6929.2014.03.05
[23] 贺晋瑜, 燕丽, 雷宇, 等. 京津冀地区燃煤锅炉PM2. 5 减排潜力分析[J]. 中国环境科学, 2017, 37(04): 1247-1253.
[24] 邱兆祥, 刘帅. 机动车限行对北京市空气污染指数的影响[J]. 经济研究参考, 2013, 2499(11): 70-73, 6.
https://doi.org/10.16110/j.cnki.issn2095-3151.2013.11.001
[25] 高文康, 高庆先, 陈跃浩, 等. 北京市沙尘暴天气环境质量等级划分[J]. 资源科学, 2014, 36(07): 1527-1534.
[26] LI W, SHAO L, WANG W, et al. Air quality improvementin response to intensified control strategies in Beijingduring 2013—2019[J]. Science of The Total Environment, 2020, 744: 140776.
https://doi.org/10.1016/j.scitotenv.2020.140776
[27] LAN T, YU M, XU Z, et al. Temporal and spatial variationcharacteristics of catering facilities based on POIdata: a case study within 5th ring road in Beijing[J]. Procedia Comput Sci, 2018, 131: 1260-1268.
https://doi.org/10.1016/j.procs.2018.04.343
[28] HUANG X, TANG G, ZHANG J, et al. Characteristicsof PM2. 5 pollution in Beijing after the improvement ofair quality[J]. Journal of Environmental Sciences, 2021, 100: 1-10.
https://doi.org/10.1016/j.jes.2020.06.004
[29] RESC. RESC. 2021.
[30] OSM. OpenStreetMap. 2021.
[31] CNEMC. China National Environmental MonitoringCentre. 2020.
[32] 罗家国, 罗浩, 仲佳嘉. 基于SPSS的学生能力倾向聚类分析研究[J]. 高等工程教育研究, 2012, 137(06): 101-104, 35.
[33] 马振, 周密. 聚类分析在秦淮河水质指标相关性研究中的应用[J]. 水文, 2018, 38(01): 77-80.
[34] GOPAL KRISHNA PATRO S, SAHU K K. Normalization: A Preprocessing Stage[J/OL] 2015, arXiv: 1503. 06462.
https://ui.adsabs.harvard.edu/abs/2015arXiv150306462G.10.48550/arXiv.1503.06462
[35] NIñO-ADAN I, LANDA-TORRES I, PORTILLO E, etal. Influence of statistical feature normalisation methodson K-Nearest Neighbours and K-Means in the contextof industry 4. 0[J]. Engineering Applications of ArtificialIntelligence, 2022, 111: 104807.
https://doi.org/10.1016/j.engappai.2022.104807
[36] 曹玉茹. 基于SPSS加权回归的回归分析条件适用性研究[J]. 统计与决策, 2019, 35(04): 89-92.
https://doi.org/10.13546/j.cnki.tjyjc.2019.04.020
[37] 毕建武, 贾进章, 刘丹. 基于SPSS多元回归分析的回采工作面瓦斯涌出量预测[J]. 安全与环境学报, 2013, 13(05): 183-186.
https://doi.org/10.3969/j.issn.1009-6094.2013.05.038
[38] 俞立平, 宋夏云, 王作功. 评价型指标标准化与评价方法对学术评价影响研究———以TOPSIS评价方法为例[J]. 情报理论与实践, 2020, 43(02): 15-20, 54.
https://doi.org/10.16353/j.cnki.1000-7490.2020.02.003
[39] 杨巍, 张莉莉. 逐步回归分析在经济林产品需求预测中的应用[J]. 林业经济, 2009(08): 74-76.
[40] 吴凌云, 谢军飞, 张欣. 冬季采暖优化对北京地区空气质量的影响[J]. 气候与环境研究, 2021, 26(04): 391-402.
https://doi.org/10.3878/j.issn.1006-9585.2021.20098
[41] 程昊淼, 姜智文, 张培浩, 等. 基于CFD 模拟的城市住区形态参数对大气污染物扩散影响[J]. 北京工业大学学报, 2021, 47(12): 1377-1387.
https://doi.org/10.11936/bjutxb202105009
引用本文张艳杰. 北京市PM2. 5 的时空分布特征及影响因素[J]. 中国可持续发展评论, 2022, 1(2): 10-16.
CitationZhang Yanjie. Temporal and spatial distribution characteristics and influencing factors of PM2. 5 in Beijing[J]. Chinese Sustainable Development Review, 2022, 1(2): 10-16.