参考文献
[1] Griffiths A D, Christian K A. The effects of fire on the frillneck lizard(Chlamydosaurus kingii)in northern Australia[J]. Australian Journal of Ecology, 1996, 21: 386-398. https://doi.org/10.1111/j.1442-9993.1996.tb00625.x. [2] Yap J Y S, Kooyman R M, Crayn D M, et al, Filters of floristic exchange: how traits and climate shape the rain forest invasion of Sahul from Sunda[J]. Journal of Biogeography, 2018, 45(4): 838-847. https://doi.org/10.1111/jbi.13180. [3] Laurance W. Rainforest fragmentation and the structure of small mammal communities in tropical Queensland[J]. Biological Conservation, 1994, 69(1): 23-32. https://doi.org/10.1016/0006-3207(94)90291-2 [4] Laurance W, M Goosem, S Laurance. Impacts of roads and linear clearing on tropical forests[J]. Trends in Ecology & Evolution(TREE), 2009, 24(12): 659-669. https://doi.org/10.1016/j.tree.2009.06.009. [5] Pohlman C L, Turton S M, Goosem M. Edge effects of linear canopy openings on tropical rainforest microclimate[ J]. Biotropica, 2007, 39(1): 62-71. https://doi.org/10.1111/j.1744-7429.2006.00222.x. [6] Lips K R. Overview of chytrid emergence and impacts on amphibians[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371(1709): 20150465. https://doi.org/10.1098/rstb.2015.0465. [7] Sloan S, Goosem M, Laurance S G. Tropical forest re- generation following land abandonment is driven by primary rainforest distribution in an old pastoral region[J]. Landscape Ecology, 2016, 31: 601-618. https://doi.org/10.1007/s10980-015-0267-4. [8] Woinarski J, Braby M, Burbidge A, et al, Reading the black book: The number, timing, distribution and causes of listed extinctions in Australia[J]. Biological Conservation, 2019, 239: 108261. https://doi.org/10.1016/j.biocon.2019.108261. [9] Woinarski J C, Garnett S T, Legge S M. No More Extinctions: Recovering Australias Biodiversity[J]. Annual Review of Animal Biosciences, 2025, 13: 507-528. https://doi.org/10.1146/annurev-animal-111523-102004. [10] Woinarski J C Z, Braby M F, Gibb H, et al, This is the way the world ends; not with a bang but a whimper: Estimating the number and ongoing rate of extinctions of Australian non-marine invertebrates[J]. Cambridge Prisms: Extinction, 2024, 2(000). https://doi.org/10.1017/ext.2024.26. [11] Legge S, Rumpff L, Garnett S T, et al, Loss of terrestrial biodiversity in Australia: Magnitude, causation, and response[J]. Science, 2023, 381(6658): 11. https://doi.org/10.1126/science.adg7870. [12] Bayraktarov E, Ehmke G, Tulloch AI, et al, A threatened species index for Australian birds[J]. Conservation Science and Practice, 2021, 3: e322. https://doi.org/10.1111/csp2.322. [13] Garnett S T, Hayward-Brown B K, Kopf R K, et al, Australias most imperilled vertebrates[J]. Biological Conservation, 2022, 270: 109561. https://doi.org/10.1016/j.biocon.2022.109561. [14] Kearney S G, Carwardine J, Reside AE, et al, The threats to Australian imperiled species[J]. Pacific Conservation Biology, 2019, 25: 231-244. https://doi.org/10.1016/j.biocon.2022.109561. [15] Legge S, Murphy B P, McGregor H, et al, Enumerating a continental-scale threat: how many feral cats are in Australia?[J]. Biological Conservation, 2017, 206: 293-303. https://doi.org/10.1016/j.biocon.2016.11.032. [16] Stobo-Wilson A, Murphy B, Legge S, et al, Counting the bodies: estimating the spatial variation killed by two invasive mesopredators[J]. Diversity and Distributions, 2022, 28: 976-991. https://doi.org/10.1111/ddi.13497. [17] Legge S M, Woinarski J C Z, Burbidge A A, et al, Havens for threatened Australian mammals: the contributions of fenced areas and offshore islands to protecting mammal species that are susceptible to introduced predators[J]. Wildlife Research, 2018, 45: 627-644. https://doi.org/10.1071/wr17172. [18] Paltridge R, Napangati Y, Ward Y, et al. The relationship between the presence of people, fire patterns and persistence of two threatened species in the Great Sandy Desert[J]. Wildlife Research, 2025, 52(2): WR24076. https://doi.org/10.1071/WR24076. [19] Vörösmarty C J, Stewart-Koster B, Green P A, et al, A green-gray path to global water security and sustainable infrastructure[J]. Global Environmental Change, 2021, 70: 102344. https://doi.org/10.1016/j.gloenvcha.2021.102344. [20] Tickner D, Opperman J J, Abell R, et al, Bending the Curve of Global Freshwater Biodiversity Loss-An Emergency Recovery Plan[J]. BioScience, 2020, 70: 330-342. https://doi.org/10.1093/biosci/biaa002. [21] Arthington A H, Anik B, Bunn S E, et al, The Brisbane Declaration and Global Action Agenda on Environmental Flows[J]. Frontiers in Environmental Science, 2018, 6: 45. https://doi.org/10.3389/fenvs.2018.00045. [22] Kennard M J, Pusey B J, Olden J D, et al. Classification of natural flow regimes in Australia to support environmental flow management[J]. Freshwater Biology, 2010, 55(1): 171-193. https://doi.org/10.1111/j.1365-2427.2009.02307.x. [23] Poff N, Richter B, Arthington A, et al, The Ecological Limits of Hydrologic Alteration(ELOHA): A New Framework for Developing Regional Environmental Flow Standards[J]. Freshwater Biology, 2010, 55: 147-170. https://doi.org/10.1111/j.1365-2427.2009.02204.x. [24] Hermoso V, Pantus F, Olley J, et al, Prioritising catchment rehabilitation for multi objective management: An application from SE-Queensland, Australia[J]. Ecological Modelling, 2015, 316: 168-175. https://doi.org/10.1016/j.ecolmodel.2015.08.017. [25] Carnell P, Whiteoak K, Raoult V, et al. Measuring and accounting for the benefits of restoring coastal blue carbon ecosystems: The Guide(Version 1)[EB/OL]. De- partment of Climate Change, Energy, the Environment and Water, Australian Government, 2024. https://www.dcceew.gov.au/sites/default/files/documents/eea-guide-accounting-benefits-coastal-restoration_1.pdf. [26] Woinarski J C, Garnett S T, Legge S M, et al, The contribution of policy, law, management, research, and advocacy failings to the recent extinctions of three Australian vertebrate species[J]. Conservation Biology, 2017, 31: 13-23. https://doi.org/10.1111/cobi.12852. [27] Williams S E, Fuente A D L. Long-term changes in populations of rainforest birds in the Australia Wet Tropics bioregion: A climate-driven biodiversity emergency Rainforest birds on escalator to extinction[J]. PLoS ONE, 2021, 16(12): 16. https://doi.org/10.1371/journal.pone.0254307. [28] Bowman D, Williamson G, Yebra M, et al, Wildfires: Australia needs national monitoring agency[J]. Nature, 2020, 584(7820): 188-191. https://doi.org/10.1038/d41586-020-02306-4. [29] Legge S, Rumpff L, Woinarski J C Z, et al, The conservationimpacts of ecological disturbance: time-bound estimatesof population loss and recovery for fauna affectedby the 2019-20 Australian megafires[J]. Global EcologyBiogeography, 2022, 31: 2085-2104. https://doi.org/10.1111/geb.13473. [30] Driscoll D A, Macdonald K J, Gibson R K, et al, Biodiversityimpacts of the 2019-2020 Australian megafires[J]. Nature, 2024, 635: 898-905. https://doi.org/10.1038/s41586-024-08174-6. [31] Greenville A C, Wardle G M, Dickman C R. Desertmammal populations are limited by introduced predatorsrather than future climate change. Royal SocietyOpen Science, 2017, 4(11): 170384. https://doi.org/10.1098/rsos.170384. [32] Fang Z, Zhang W, Brandt M, et al, Globally IncreasingAtmospheric Aridity Over the 21st Century[J]. EarthsFuture, 2022, 10(10). https://doi.org/10.1029/2022EF003019. [33] Allen C D, Macalady A K, Chenchouni H, et al, A globaloverview of drought and heat-induced tree mortalityreveals emerging climate change risks for forests[J]. Forest Ecology and Management, 2010, 259(4): 660-684. https://doi.org/10.1016/j.foreco.2009.09.001. [34] Bauman D, Fortunel C, Delhaye G, et al, Tropical treemortality has increased with rising atmospheric waterstress[J]. Nature, 2022, 608: 528-533. https://doi.org/10.1038/s41586-022-04737-7. [35] Laurance S, Laurance W, Nascimento H, et al, Longtermvariation in Amazon forest dynamics[J]. Journalof Vegetation Science, 2009, 20: 323-333. https://doi.org/10.1111/J.1654-1103.2009.01044.X. [36] Briant G, Laurance S. Habitat fragmentation and thedesiccation of forest canopies: A case study from easternAmazonia[J]. Biological Conservation, 2010, 143: 2763-2769. https://doi.org/10.1016/j.biocon.2010.07.024. [37] Tng D Y P, Apgaua D M G, Paz C P, et al, Drought reducesthe growth and health of tropical rainforest understoryplants[J]. Forest Ecology and Management, 2022, 511: 120128. https://doi.org/10.1016/j.foreco.2022.120128. [38] Gely C, Laurance S G W, Stork N E. The effect ofdrought on wood-boring in trees and saplings in tropicalrainforests[J]. Forest Ecology and Management, 2021, 489(373-381): 119078 https://doi.org/10.1016/j.foreco.2021.119078. [39] Ashton L A, Griffiths H M, Parr C L, et al, Termitesmitigate the effects of drought in tropical rainforest[J]. Science, 2019, 363(6423): 174-177. https://doi.org/10.1126/science.aau9565. [40] Gely C, Laurance S G W, Blüthgen, et al, Inferring ant(Hymenoptera: Formicidae)dietary responses to experimentaldrought in a tropical rainforest using stable isotopes[J]. Austral Entomology, 2024, 63(4). https://doi.org/10.1111/aen.12712. [41] Caddy-Retalic, Stefan, Hoffmann B D, et al, Plant andant assemblages predicted to decouple under climatechange[J]. Diversity & Distributions, 2019. https://doi.org/10.1111/ddi.12858. [42] Nowrouzi S, Bush A, Harwood T, et al, Incorporatinghabitat suitability into community projections: Ant responsesto climate change in the Australian Wet Tropics[J]. Diversity & Distributions, 2019, 25(8). https://doi.org/10.1111/ddi.12935. [43] Watson C. These animals are racing towards extinction. A new home might be their last chance[J]. Nature, 2023, 621(7977): 5. https://doi.org/10.1038/d41586-023-02732-0.