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Abstract:The
 

computation
 

of
 

indefinite
 

integrals
 

in
 

certain
 

kind
 

of
 

“closed
 

form”,which
 

is
 

known
 

as
 

symbolic
 

integration,is
 

an
 

important
 

research
 

subarea
 

of
 

computer
 

algebra.After
 

implementing
 

the
 

recursive
 

Risch
 

algorithm
 

partly,it
 

was
 

realized
 

that
 

efficient
 

algorithms
 

can
 

be
 

achieved
 

by
 

a
 

parallel
 

approach.This
 

led
 

to
 

the
 

famous
 

Risch-Norman
 

algorithm.However,this
 

approach
 

relies
 

on
 

an
 

ansatz
 

with
 

heuristic
 

degree
 

bounds.Norman’s
 

completion-based
 

approach
 

provides
 

an
 

al-
ternative

 

for
 

finding
 

the
 

numerator
 

of
 

the
 

integral
 

avoiding
 

heuristic
 

degree
 

bounds.However,de-

pending
 

on
 

the
 

differential
 

field
 

and
 

on
 

the
 

selected
 

ordering
 

of
 

terms,it
 

may
 

happen
 

that
 

the
 

completion
 

process
 

does
 

not
 

terminate
 

and
 

yields
 

an
 

infinite
 

number
 

of
 

reduction
 

rules.We
 

apply
 

Norman’s
 

approach
 

to
 

the
 

differential
 

field
 

generated
 

by
 

Airy
 

functions,which
 

play
 

an
 

important
 

role
 

in
 

physics.By
 

fixing
 

adapted
 

orderings
 

and
 

analyzing
 

the
 

process
 

in
 

the
 

concrete
 

case,we
 

present
 

two
 

complete
 

reduction
 

systems
 

for
 

Airy
 

functions
 

by
 

finitely
 

many
 

formulae
 

to
 

denote
 

infinitely
 

many
 

reduction
 

rules.
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1 Introduction
 

Symbolic
 

integration
 

is
 

used
 

to
 

calculate
 

cer-
tain“closed

 

form”
 

of
 

integrals
 

by
 

algebraic
 

meth-
ods.Traditionally,algorithms

 

using
 

differential
 

fields
 

have
 

been
 

developed
 

for
 

that,see
 

e.g.[22,5,

20].Nowadays,symbolic
 

integration
 

based
 

on
 

re-

duction
 

becomes
 

popular,especially
 

when
 

creative
 

telescoping
 

plays
 

an
 

important
 

role
 

[3,1,8,9,2,

16,7,12].It
 

also
 

has
 

many
 

applications
 

in
 

combi-

natorics,algorithm
 

complexity
 

analysis
 

and
 

mathe-

matical
 

physics,see
 

[25]
 

for
 

example.

Liouville’s
 

Theorem
 

and
 

its
 

various
 

refine-

ments
 

on
 

the
 

structure
 

of
 

elementary
 

integrals
 

are
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the
 

main
 

theoretical
 

foundation
 

for
 

many
 

algorithms
 

in
 

symbolic
 

integration.Basically,Liouville’s
 

Theorem
 

tells
 

that
 

a
 

rational
 

expression
 

f
 

in
 

terms
 

of
 

given
 

functions
 

yi
 has

 

an
 

integral
 

that
 

is
 

an
 

elementary
 

expression
 

of
 

the
 

yi
 if

 

and
 

only
 

if
 

it
 

has
 

an
 

integral
 

of
 

the
 

form

∫f=
u
ν +∑

i
αilnpi  ,

where
 

αi
 are

 

constants
 

and
 

u,v,piare
 

polynomial
 

expressions
 

in
 

the
 

yi
 or,in

 

other
 

words,f
 

can
 

be
 

written
 

as

f=
u
ν  ' +∑

i
αi

p'i

pi
.

Risch
 

[22,23]
 

developed
 

an
 

algorithm
 

to
 

deter-
mine

 

whether
 

an
 

elementary
 

function
 

has
 

an
 

ele-
mentary

 

integral.Main
 

parts
 

of
 

the
 

algorithm
 

are
 

also
 

presented
 

in
 

[15,5].See
 

[24]
 

for
 

commentar-
ies

 

and
 

details
 

as
 

well
 

as
 

further
 

developments
 

and
 

references.Since
 

these
 

algorithms
 

are
 

very
 

involved
 

because
 

of
 

their
 

recursive
 

structure,a
 

simpler
 

and
 

more
 

efficient
 

approach
 

was
 

devised:the
 

Risch-
Norman

 

algorithm
 

[19].It
 

aims
 

at
 

directly
 

finding
 

candidates
 

for
 

polynomials
 

v
 

and
 

pi
 and

 

determi-
ning

 

u
 

and
 

αi
 in

 

the
 

above
 

form
 

of
 

the
 

integral.
Since

 

in
 

general
 

this
 

approach
 

relies
 

on
 

heuristics
 

so
 

far,it
 

may
 

fail
 

to
 

find
 

an
 

elementary
 

integral
 

e-
ven

 

if
 

the
 

given
 

integrand
 

has
 

one.Nonetheless,the
 

approach
 

is
 

powerful
 

in
 

practice,rather
 

easy
 

to
 

im-
plement,and

 

can
 

even
 

be
 

generalized
 

to
 

many
 

clas-
ses

 

of
 

integrands
 

for
 

which
 

no
 

other
 

algorithm
 

is
 

a-
vailable.For

 

details,see
 

[14]
 

and
 

[5,Ch.10],for
 

example.We
 

will
 

discuss
 

how
 

to
 

find
 

the
 

numera-
tor

 

u
 

later.
For

 

instance,Boettner
 

observed
 

that
 

the
 

fol-
lowing

 

antiderivative
 

cannot
 

be
 

found
 

by
 

recent
 

ex-
tensions

 

of
 

the
 

Risch—Norman
 

algorithm[4,Ex.
8.7].

∫Ai'(x)2dx=
x
3Ai'

(x)2+

2
3Ai

(x)Ai'(x)-
x2

3Ai
(x)2 (1)

The
 

Airy
 

function
 

Ai(x)satisfies
 

Ai″x  =xAix  

and
 

can
 

be
 

given
 

by
 

the
 

integral

Aix  =
1
π∫

�

0
cost3

3+xt  dt
for

 

real
 

x.Its
 

properties
 

and
 

applications
 

in
 

physics
 

are
 

discussed
 

in
 

[26]
 

and
 

[11,Ch.9],for
 

example.
Norman

 

[18]
 

proposed
 

improvements
 

to
 

make
 

the
 

heuristic
 

Risch-Norman
 

algorithm
 

more
 

powerful
 

by
 

addressing
 

the
 

problem
 

of
 

finding
 

the
 

numera-
tor

 

of
 

the
 

rational
 

part
 

of
 

the
 

integral.Instead
 

of
 

finding
 

u
 

via
 

an
 

ansatz
 

with
 

undetermined
 

constant
 

coefficients
 

as
 

explained
 

above,he
 

discussed
 

a
 

re-
duction-based

 

approach
 

to
 

this
 

problem.His
 

reduc-
tion

 

rules
 

are
 

based
 

on
 

identities
 

for
 

fixed
 

v
 

relating
 

certain
 

numerators
 

u
 

with
 

the
 

corresponding
 

inte-

grands,such
 

as

∫f=
u
ν

 

or
 

f=
u
ν  ',

which
 

involve
 

parameters
 

in
 

their
 

coefficients
 

and
 

exponents.To
 

reduce
 

a
 

given
 

term,an
 

instance
 

f
 

as
 

above
 

used
 

for
 

reducing
 

can
 

only
 

be
 

multiplied
 

by
 

a
 

constant
 

coefficient
 

to
 

match
 

its
 

leading
 

term
 

with
 

the
 

given
 

term.In
 

this
 

paper,based
 

on
 

Norman’s
 

completion-based
 

approach
 

[18],we
 

present
 

two
 

complete
 

reduction
 

systems
 

for
 

Airy
 

functions
 

which
 

are
 

both
 

infinite.

2 Preliminaries
 

Let
 

F
 

be
 

a
 

field
 

of
 

characteristic
 

zero.A
 

deri-
vation

 

∂
 

on
 

F
 

is
 

an
 

additive
 

map
 

that
 

satisfies
 

the
 

product
 

rule
 

∂fg  = ∂f  g +f∂g  
 

for
 

all
 

f,

g∈F .Then
 

F,∂  
 

forms
 

a
 

differential
 

field.The
 

set
 

of
 

constant
 

elements
 

in
 

F
 

forms
 

a
 

subfield
 

de-
noted

 

by
 

Const∂ F  = f∈F|∂f=0  .
Moreover,we

 

only
 

consider
 

the
 

case
 

where
 

the
 

field
 

F
 

is
 

given
 

as
 

a
 

purely
 

transcendental
 

exten-
sion

 

F=Ct1,...,tn  
 

of
 

a
 

field
 

of
 

constants
 

C ⊆
 

Const∂(F)
 

by
 

elements
 

t1,...,tn ∈F
 

that
 

are
 

al-

gebraically
 

independent
 

over
 

C .Hence,∂
 

is
 

a
 

C-
linear

 

map
 

on
 

the
 

multivariate
 

rational
 

function
 

field
 

Ct1,…,tn  
 

and
 

t1,…,tn
 model

 

algebraically
 

independent
 

functions.
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Actually,a
 

derivation
 

on
 

such
 

a
 

field
 

is
 

com-

pletely
 

determined
 

by
 

the
 

elements
 

∂t1,…,∂tn
 via

 

∂=∑
n

i=1 ∂ti  ·∂i ,where
 

∂i  is
 

the
 

standard
 

partial
 

derivation
 

with
 

respect
 

to
 

ti .Conversely,any
 

choice
 

of
 

∂t1,…,∂tn ∈F
 

yields
 

a
 

derivation
 

on
 

F
 

this
 

way.The
 

following
 

definition
 

is
 

based
 

on
 

[5,

Ch.10].
Definition.For

 

F,∂  = Ct1,…,tn  ,∂  
 

with
 

C ⊆Const∂ F  
 

such
 

that
 

t1,…,tn
 are

 

algebraical-
ly

 

independent
 

over
 

C ,we
 

define
 

the
 

denominator
 

of
 

∂
 

as
 

den∂  :=lcm den∂t1  ,…,den∂tn    
 

and
 

to
 

∂
 

we
 

associate
 

the
 

derivation
 

∂􀮨:F →F
 

de-

fined
 

by
 

∂􀮨f:=den∂  ·∂f.

In
 

contrast
 

to∂,the
 

derivation
 

∂􀮨
 

necessarily
 

maps
 

poly-

nomials
 

to
 

polynomials
 

so
 

that
 

Ct1,…,tn  ,∂􀮨  
 

is
 

a
 

differential
 

subring
 

of
 

F,∂􀮨  .

2.1 Elementary
 

integrals
 

In
 

order
 

to
 

discuss
 

elementary
 

integration,we
 

recall
 

several
 

notions
 

in
 

the
 

following,see
 

e.g.[5,

Ch.3].Let
 

E,Δ  
 

and
 

F,∂  
 

be
 

two
 

differential
 

fields.We
 

say
 

that
 

E
 

is
 

a
 

differential
 

field
 

extension
 

of
 

F ,or
 

F
 

is
 

a
 

differential
 

subfield
 

of
 

E ,if
 

E
 

con-
tains

 

F
 

and
 

Δ F =∂.When
 

there
 

is
 

no
 

confusion,

we
 

still
 

denote
 

the
 

derivation
 

Δ
 

on
 

E
 

by
 

∂.Let
 

t
 

be-
long

 

to
 

a
 

differential
 

extension
 

of
 

F .Then,t
 

is
 

called
 

a
 

monomial
 

over
 

F
 

if
 

it
 

is
 

transcendental
 

o-
ver

 

F
 

and
 

its
 

derivative
 

belongs
 

to
 

F t  .It
 

is
 

called
 

exponential
 

over
 

F ,if
 

its
 

logarithmic
 

deriva-

tive
 ∂t
t

 

is
 

equal
 

to
 

the
 

derivative
 

of
 

some
 

element
 

in
 

F ;and
 

is
 

said
 

to
 

be
 

logarithmic
 

over
 

F
 

if
 

its
 

deriva-
tive

 

is
 

equal
 

to
 

the
 

logarithmic
 

derivative
 

of
 

some
 

element
 

in
 

F .For
 

example,exp(x)is
 

exponential
 

over
 

 (x)with
 

the
 

usual
 

derivation
 d
dx
,because

 

exp(x)'/
 

exp(x)=
 

1
 

is
 

the
 

derivative
 

of
 

x;similarly,

logx  
 

is
 

logarithmic
 

over
 

 (x)by
 

logx  '=
x'
x .

We
 

call
 

E,∂  
 

an
 

elementary
 

extension
 

of
 

F,∂  
 

if
 

there
 

are
 

z1,…,zn ∈E
 

such
 

that
 

E =
F z1,…,zn  

 

and
 

zi
 is

 

exponential,logarithmic,or
 

algebraic
 

over
 

F z1,…,zi-1  ,∂  
 

for
 

all
 

i=1,2,
…,n.Then,we

 

say
 

f∈F
 

has
 

an
 

elementary
 

inte-
gral,if

 

there
 

is
 

an
 

elementary
 

extension
 

E,∂  
 

of
F,∂  

 

and
 

g ∈E
 

such
 

that
 

f =∂g,and
 

we
 

call
 

such
 

g
 

an
 

elementary
 

integral
 

of
 

f.
For

 

a
 

field F,∂  = Ct1,…,tn  ,∂  
 

as
 

a-
bove,the

 

Risch-Norman
 

algorithm
 

mentioned
 

ear-
lier

 

first
 

determines
 

polynomials
 

v∈C t1,…,tn  
andp1,…,pm ∈ C t1,…,tn  

 

and
 

then
 

solves
 

the
 

ansatz

f=∂
u
v  +∑

m

i=1
αi
∂pi

pi
(2)

for
 

α1,…,αm ∈C
 

and
 

the
 

constant
 

coefficients
 

of
 

u∈C t1,…,tn  ,where
 

the
 

potential
 

support
 

of
 

u
 

is
 

chosen
 

based
 

on
 

heuristic
 

degree
 

bounds.Only
 

for
 

differential
 

fields
 

F,∂  
 

of
 

certain
 

type,theo-
retical

 

results
 

predict
 

how
 

v
 

and
 

p1,…,pm
 have

 

to
 

be
 

chosen
 

explicitly
 

in
 

order
 

not
 

to
 

miss
 

any
 

solu-
tions,see

 

[10,13]
 

and
 

also
 

[5,Sec.10.4].In
 

parti-
cular,there

 

is
 

the
 

well-known
 

case
 

of
 

rational
 

func-
tion

 

integration
 

corresponding
 

to
 

Ct1  ,∂  
 

with
 

∂t1=1,where
 

even
 

a
 

comprehensive
 

choice
 

of
 

can-
didate

 

monomials
 

appearing
 

in
 

u
 

can
 

be
 

given
 

based
 

on
 

f.
Determining

 

u
 

is
 

challenging
 

because
 

of
 

possi-
ble

 

cancellations
 

in
 

the
 

derivative
 

∂u.In
 

practice,u-
sually

 

various
 

heuristic
 

degree
 

bounds
 

have
 

been
 

used
 

to
 

determine
 

a
 

finite
 

ansatz
 

for
 

u.In
 

the
 

liter-
ature,the

 

bound
degti(u)≤1-min(1,degti(∂ti))+
max(degti(num(f)),degti(den(f))) (3)

on
 

partial
 

degrees
 

is
 

given
 

for
 

elementary
 

F,cf.
[14,5],and

 

in
 

general
 

[5]
 

proposes
 

to
 

use
 

the
 

fol-
lowing

 

bound
 

on
 

the
 

total
 

degree.
deg(u)≤1+deg(num(f))+

max(0,degden∂    -max
i

 
deg∂􀮨ti  ) (4)

In
 

implementations,the
 

bounds

deg(u)≤1+deg
ν

gcddenf  ,∂􀮨 denf        +
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maxdegnumf    ,degdenf      (5)

on
 

the
 

total
 

degree
 

[6]
 

and

degti(u)≤1+max degti ν  ,

degti
den∂  

gcdden∂  ,denf      +
degti numf     (6)

on
 

the
 

partial
 

degrees
 

[4]
 

have
 

been
 

used.
Example

 

1.For
 

the
 

integral(1),we
 

consider
 

the
 

differential
 

field
 

Ct1,t2,t3  ,∂  
 

with
 

∂t1 =1,

∂t2=
 

t3,and
 

∂t3 =
 

t1t2.The
 

generators
 

t1,t2,t3
 correspond

 

to
 

the
 

functions
 

x,Aix  ,and
 

Ai'x  ,

respectively.In
 

the
 

notation
 

of(2),we
 

havef=
 

t23,

i.e.m=0.The
 

integral
 

is
 

given
 

by

u=
1
3t1t

2
3+
2
3t2t3-

1
3t

2
1t22 (7)

and
 

v
 

=
 

1.Note
 

that
 

this
 

integral
 

violates
 

all
 

de-
gree

 

bounds(3)—(6)mentioned
 

above.
Thus,we

 

are
 

going
 

to
 

apply
 

an
 

alternative
 

ap-

proach
 

to
 

find
 

the
 

numerator
 

u
 

of
 

the
 

integral
 

by
 

reduction.This
 

idea
 

comes
 

from
 

[18].When
 

v
 

and
 

pi
  in(2)are

 

given,determining
 

whether
 

the
 

inte-

grand
 

f∈Ct1,…,tn  
 

has
 

an
 

elementary
 

integral
 

can
 

be
 

done
 

by
 

reducing
 

it
 

using
 

a
 

sufficiently
 

com-

plete
 

set
 

of
 

known
 

terms
 

∂qi

v  
 

coming
 

from
 

known
 

qi ∈C t1,…,tn  
 

that
 

generate
 

the
 

whole
 

space
 

{∂(q/v)|q ∈C[t1,…,tn]}.Such
 

pairs
 

∂qi

v  ,qi

v  
 

can
 

be
 

found
 

via
 

a
 

completion
 

proce-

dure
 

proposed
 

by
 

Norman
 

starting
 

from
 

pairs
 

where
 

qi
 is

 

just
 

a
 

monomial.

2.2 Monomial
 

orders

Usually,a
 

semigroup
 

order
 

on
 

the
 

commuta-
tive

 

monoid
 

of
 

monomials t1,…,tn  
 

is
 

called
 

a
 

monomial
 

order
 

if
 

it
 

satisfies
 

ti>1
 

for
 

all
 

i.Mono-
mial

 

orders
 

can
 

be
 

induced
 

by
 

matrices
 

acting
 

on
 

exponent
 

vectors
 

of
 

monomials.A
 

monomial
 

order
 

is
 

called
 

lexicographic
 

if
 

it
 

can
 

be
 

induced
 

by
 

a
 

per-

mutation
 

matrix.More
 

generally,a
 

monomial
 

order
 

is
 

called
 

a
 

block
 

order
 

if
 

it
 

can
 

be
 

induced
 

by
 

a
 

ma-
trix

 

which
 

is(up
 

to
 

permutation
 

of
 

columns)a
 

block
 

diagonal
 

matrix.
Example

 

2.Compare
 

the
 

ordering
 

of
 

monomials
 

t1t3,

t2t3,t1t22,t23  and
 

t1t2t3,which
 

are
 

shown
 

together
 

with
 

the
 

images
 

of
 

their
 

exponent
 

vectors
 

after
 

applying
 

the
 

matrices
 

below.

1.
 

With
 

the
 

block
 

order
 

induced
 

by
 

0 1 1
0 0 1
1 0 0  ,we 

have

t1t3 < t1t22 < t2t3
1,1,1  2,0,1  2,1,0  

< t1t2t3 < t23
2,1,1  2,2,0  

2.
 

With
 

the
 

order
 

induced
 

by
 

0 1 1
2 0 1
0 0 1  ,we 

have

t1t3 < t2t3 < t1t22
1,3,1  2,1,1  2,2,0  

< t23 < t1t2t3
2,2,2  2,3,1  

Moreover,these
 

orders
 

are
 

going
 

to
 

be
 

used
 

later.

3 Reduction
 

systems
 

for
 

Airy
 

functions

Let
 

Aix  
 

be
 

the
 

Airy
 

function,which
 

satis-
fies

 

the
 

second
 

order
 

differential
 

equation
 

y″x  =
xy x  .Assume

 

that

∂t1=1,∂t2=t3 and
 

∂t3=t1t2.

Then
 

t1  can
 

be
 

viewed
 

as
 

x,t2  can
 

be
 

viewed
 

as
 

Aix  
 

and
 

t3  can
 

be
 

viewed
 

as
 

the
 

derivative
 

of
 

Aix  .In
 

addition,Ct1,t2,t3  ,∂  
 

is
 

the
 

mini-
mal

 

differential
 

field
 

containing
 

the
 

rational
 

func-
tions,the

 

Airy
 

function
 

and
 

any
 

order
 

of
 

its
 

deriva-
tives.

Throughout
 

this
 

section,we
 

consider
 

the
 

dif-
ferential

 

ring
 

C t1,t2,t3  
 

with
 

the
 

derivation
 

∂,

because
 

the
 

least
 

common
 

denominator
 

of
 

the
 

de-
rivatives

 

of
 

generators
 

is
 

equal
 

to
 

1.In
 

order
 

to
 

simplify
 

the
 

integrability
 

problem
 

of
 

an
 

element
 

in
 

Ct1,t2,t3  ,we
 

restrict
 

to
 

integrating
 

polynomi-
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als.Then
 

we
 

can
 

prove
 

that
 

if
 

a
 

polynomial
 

has
 

an
 

elementary
 

integral,then
 

the
 

integral
 

should
 

also
 

be
 

a
 

polynomial
 

in
 

C t1,t2,t3  .
 

Define
 

θ:=
t3
t2
,

then
 

Ct1,θ,t2  
 

is
 

a
 

tower
 

of
 

monomial
 

extensions
 

since
 

∂θ=-θ2+t1  and
 

∂t2=θt2.
Theorem

 

1.If
 

a
 

polynomial
 

f∈C t1,t2,t3  
 

has
 

an
 

elementary
 

integral
 

over
 

Ct1,t2,t3  ,∂  ,then
 

there
 

exists
 

g∈Ct1,t2,t3  
 

such
 

that
 

∂g=f.
Proof.From

 

Lemma
 

2
 

below,it
 

follows
 

that
 

there
 

is
 

no
 

polynomial
 

p ∈C t1,t2,t3  \C
 

with
 ∂p
p ∈

C t1,t2,t3  .Therefore,the
 

claim
 

follows
 

from
 

Theorem
 

10.2.1
 

of
 

[5].
In

 

the
 

following
 

two
 

lemmas,we
 

follow
 

the
 

convention
 

to
 

say
 

a
 

polynomial
 

is
 

special
 

if
 

it
 

di-
vides

 

its
 

own
 

derivative.
Lemma

 

1.There
 

are
 

no
 

special
 

polynomials
 

in
 

C(t1)[θ]\C(t1)
 

and
 

we
 

have
 

Const(C(t1,t2,t3))=C.
Proof.It

 

was
 

shown
 

in
 

[17,Sec.2.2]
 

that
 

the
 

Airy
 

differential
 

equation
 

∂2y-t1y=0
 

has
 

no
 

non-zero
 

Liouvillian
 

solutions.Consequently①,∂y=-y2+t1 

does
 

not
 

have
 

an
 

algebraic
 

solution
 

ω ∈Ct1  ,

since
 

exp∫ω  would 

be
 

a
 

Liouvillian
 

solution
 

of
 

the
 

Airy
 

differential
 

equation.Then,by
 

Theorem
 

3.4.3
 

of
 

[5],there
 

is
 

no
 

special
 

polynomial
 

in
 

Ct1  θ  \Ct1  .Now,Corollary
 

2.54
 

of
 

[20]
 

yields
 

ConstCt1,θ,t2    =C .
Lemma

 

2.Let
 

p,q∈Ct1)[t2,t3  
 

such
 

that
 

∂p=q
·p

 

and
 

p≠0,then
 

p,q∈Ct1  .
Proof.By

 

Lemma
 

1,we
 

have
 

ConstCt1)[t2,t3    =
C .Therefore,by

 

homogeneity
 

of
 

∂
 

w.r.t.total
 

de-

gree
 

in
 

t2,t3,we
 

have
 

either
 

deg(p)=
 

0
 

or
 

deg∂p  =deg(p).Together,this
 

implies
 

q ∈
Ct1  .Hence,by

 

homogeneity
 

of
 

∂,each
 

homoge-

neous
 

part
 

h
 

of
 

p
 

satisfies
 

∂h=qh.Let
 

h=ftn
2

 with
 

f∈Ct1)[θ  
 

and
 

n
 

=
 

deg(p)be
 

the
 

leading
 

hom-

ogeneous
 

part
 

of
 

p.Then,we
 

obtain
 

∂h= ∂f  tn
2+

nθftn
2,which

 

implies
 

∂f= -nθ+q  f,
 

i.e.f ∈
Ct1)[θ  

 

is
 

a
 

special
 

polynomial.By
 

Lemma
 

1,we
 

obtain
 

f∈Ct1  .Thus,n=0
 

follows
 

from
 

∂f=
-nθ+q  f,which

 

implies
 

p∈Ct1  .
Next,we

 

are
 

going
 

to
 

present
 

two
 

complete
 

reduction
 

systems
 

for
 

Airy
 

functions
 

with
 

respect
 

to
 

different
 

monomial
 

orders.A
 

reduction
 

system
 

can
 

be
 

viewed
 

as
 

a
 

set
 

of
 

polynomial
 

pairsp,q  ∈
C t1,…,tn  2

 

such
 

that
 

∂q=p
 

with
 

p
 

monic.It
 

is
 

said
 

to
 

be
 

complete
 

if
 

the
 

leading
 

monomial
 

of
 

∂f
 

for
 

any
 

f ∈C t1,…,tn  
 

can
 

be
 

reduced
 

by
 

some
 

pair
 

in
 

the
 

system,i.e.,the
 

leading
 

monomial
 

of
 

∂f
 

is
 

equal
 

to
 

the
 

leading
 

monomial
 

of
 

p
 

in
 

the
 

pair.In
 

principle,complete
 

reduction
 

systems
 

can
 

be
 

computed
 

by
 

the
 

method
 

presented
 

in
 

[18].
However,the

 

algorithm
 

may
 

not
 

terminate
 

and
 

produce
 

infinitely
 

many
 

parameterized
 

formulas
 

for
 

such
 

pairs,which
 

is
 

the
 

case
 

in
 

the
 

situations
 

be-
low.It

 

turns
 

out
 

that
 

a
 

subset
 

of
 

these
 

formulas,

which
 

still
 

is
 

infinite,is
 

sufficient
 

to
 

define
 

a
 

com-

plete
 

reduction
 

system.We
 

describe
 

the
 

pattern
 

of
 

these
 

sufficient
 

reduction
 

rules
 

in
 

the
 

concrete
 

ca-
ses.

3.1 A
 

reduction
 

system
 

based
 

on
 

a
 

block
 

order

In
 

this
 

subsection,we
 

show
 

a
 

complete
 

reduc-
tion

 

system
 

based
 

on
 

the
 

block
 

order
 

induced
 

by
 

0 1 1
0 0 1
1 0 0  .The 

main
 

reason
 

to
 

choose
 

such
 

an
 

or-

der
 

is
 

because
 

for
 

any
 

polynomial
 

p∈Ct1,t2,t3  ,

the
 

total
 

degree
 

in
 

t2  and
 

t3  of
 

p
 

is
 

equal
 

to
 

that
 

of
 

the
 

derivative
 

of
 

p.So
 

we
 

try
 

to
 

use
 

a
 

block
 

orde-
ring

 

to
 

determine
 

the
 

leading
 

term
 

of
 

polynomials:

first
 

use
 

a
 

degree
 

reverse
 

lexicographic
 

order
 

with
 

t2 <t3,then
 

compare
 

the
 

degree
 

of
 

t1.
Then

 

due
 

to
 

the
 

above
 

monomial
 

order,we
 

find
 

reduction
 

rules
 

as
 

follows.
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① According
 

to
 

[21,p.70],already
 

Liouville
 

showed
 

that
 

∂y= -y2+t1  does
 

not
 

even
 

have
 

a
 

Liouvillian
 

solution.



Theorem
 

2.(i)
 

For
 

all
 

i,j,k ∈ Ν
 

with
 

k ≥1,

we
 

have

∂
ti
1tj+1
2 tk-1

3

j+1􀮩 􀮫􀮪􀪁􀪁 􀪁􀪁
Gi,j,k

  =ti
1tj
2tk
3+

i
j+1

ti-1
1 tj+1

2 tk-1
3 +

k-1
j+1

ti+1
1 tj+2

2 tk-2
3

􀮩 􀮫􀮪􀪁􀪁􀪁􀪁􀪁􀪁􀪁􀪁 􀪁􀪁􀪁􀪁􀪁􀪁􀪁􀪁
lower

 

terms

.

(ii)
 

For
 

all
 

i,j,k∈Ν
 

with
 

i≥ j
2 -

1+ -1  j

2
,

there
 

is

Pi,j,k =∑
j

n=0
∑
n
2

m=0
cm,nt

i+3m-n- j
2 +

1+(-1)j

2
1 tn

2tk+j-n
3

with
 

cm,n ∈C
 

depending
 

on
 

i,j,k
 

such
 

that
 

Pi,j,k

∈C t1,t2,t3  
 

and

∂Pi,j,k =ti
1tj
2tk
3+

∑
j
2

m=1
amti-3m

1 tj
2tk
3+ ∑

j
2

m=1-
(-1)j

2

bmti-3m+2
1 tj+1

2 tk-1
3

􀮩 􀮫􀮪􀪁􀪁􀪁􀪁􀪁􀪁􀪁􀪁􀪁 􀪁􀪁􀪁􀪁􀪁􀪁􀪁􀪁􀪁
lower

 

terms

.

with
 

am,bm
 ∈

 

C
 

depending
 

on
 

i,j,k.
Proof.(i)It

 

follows
 

from
 

the
 

product
 

rule.
(ii)We

 

proceed
 

by
 

induction
 

on
 

j.If
 

j=0,then
 

we
 

can
 

find

Pi,0,k =
ti+1
1 tk

3

i+1
 

and
  

∂Pi,0,k =ti
1tk
3+

k
i+1

ti+2
1 t2tk-1

3 .

If
 

j=1,we
 

can
 

find
 

Pi,1,k =-
i-1
k+1

ti-2
1 t2tk

3+
ti-1
1 t1+k3
k+1

 

and

∂Pi,1,k =ti
1t2tk

3-
i-2  i-1  ti-3

1 t2tk
3

k+1 -

ki-1  ti-1
1 t22tk-1

3

k+1
,

which
 

match
 

the
 

conditions.Then
 

we
 

assume
 

that

j≥2
 

and
 

that
 

(ii)
 

holds
 

for
 

j-1.Note
 

that

j
2 -

1+(-1)j

2 =

j+1
2 j

 

is
 

odd

j
2-1 j

 

is
 

even

􀮠

􀮢

􀮡

􀪁
􀪁􀪁
􀪁
􀪁

and 1-(-1)j

2 =
1 j

 

is
 

odd
0 j

 

is
 

even 
(8)

First
 

assume
 

j
 

is
 

odd.Then
 

by
 

the
 

induction
 

hypoth-
esis,there

 

exists
 

Pi-2,j-1,k+1
 in

 

Ct1,t2,t3  
 

with
 

i-2≥j-1
2 -1,which

 

implies
 

that
 

i≥j+1
2

,such
 

that

Pi-2,j-1,k+1=∑
j-1

n=0
∑
n
2

m=0
cm,nt

i+3m-n-j+1
2

1 tn
2tk+j-n
3

and
 

its
 

derivative
 

equals
 

to

ti-2
1 tj-1

2 tk+1
3 +∑

j-1
2

m=1
amti-3m-2

1 tj-1
2 tk+1

3 +

 ∑
j-1
2

m=0
bmti-3m

1 tj
2tk
3. (9)

According
 

to
 

the
 

generic
 

reduction
 

rule(i),for
 

all
 

m ∈Ν,i≥3m+2,j∈Z+
 

and
 

k∈Ν,we
 

have
 

that
 

∂Gi-3m-2,j-1,k+1equals

ti-3m-2
1 tj-1

2 tk+1
3 +

i-3m-2
j

ti-3m-3
1 tj

2tk
3+

 k
j
ti-3m-1
1 tj+1

2 tk-1
3 .

For
 

the
 

following
 

construction,one
 

can
 

note
 

that
 

i≥j+1
2

 

does
 

not
 

imply
 

i≥3m+2,but
 

all
 

coeffi-

cients
 

am
 of

 

monomials
 

with
 

negative
 

powers
 

of
 

t1
 are

 

zero
 

anyway
 

since
 

∂Pi-2,j-1,k+1 ∈C t1,t2,t3  .
In

 

order
 

to
 

cancel
 

the
 

monomials
 

containing
 

tk+1
3 ,let

 

Pi,j,k =
1
b0
·

 Pi-2,j-1,k+1-Gi-2,j-1,k+1-

∑
j-1
2

m=1
amGi-3m-2,j-1,k+1 

=∑
j-1

n=0
∑
n
2

m=0

cm,n

b0
t

i+3m-n-j+1
2

1 tn
2tk+j-n
3 +

∑
j-1
2

m=0

am

j
ti-3m-2
1 tj

2tk
3

=∑
j-1

n=0
∑
n
2

m=0

cm,n

b0
t

i+3m-n-j+1
2

1 tn
2tk+j-n
3

+∑
j-1
2

m=0

aj-1
2 -m

j
t

i+3m-j-j+1
2

1 tj
2tk
3

=∑
j

n=0
∑
n
2

m=0
c􀮨m,nt

i+3m-n-j+1
2

1 tn
2tk+j-n
3
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with
 

a0 =1,so
 

that
 

the
 

derivative
 

of
 

Pi,j,k
 is

 

equal
 

to
 

ti
1tj
2tk
3+∑

j+1
2

m=1
a􀮨mti-3m

1 tj
2tk
3+∑

j+1
2

m=1
b􀮨mti-3m+2

1 tj+1
2 tk-1

3 ,

where
 

a􀮨m,b􀮨m
 and

 

c􀮨m,ndepend
 

on
 

the
 

coefficients
 

am,

bm
 and

 

cm,n
 in

 

(9)
 

as
 

well
 

as
 

on
 

the
 

exponents
 

i,j,

k.Thus,Pi,j,k
 and

 

∂Pi,j,k
 satisfy

 

the
 

form
 

in
 

(ii),

which
 

implies
 

that
 

the
 

theorem
 

holds
 

for
 

the
 

odd
 

case.
Next

 

assume
 

that
 

j
 

is
 

even.By
 

the
 

induction
 

hy-

pothesis,there
 

exists
 

Pi+1,j-1,k+1=∑
j-1

n=0
∑
n
2

m=0
cm,nt

i-j
2+3m-n+1

1 tn
2tk+j-n
3

with
 

i+1≥j-1+1
2

 

by
 

(8),which
 

implies
 

i≥j
2-1,

such
 

that
 

its
 

derivative
 

is
 

equal
 

to

ti+1
1 tj-1

2 tk+1
3 +∑

j
2

m=1
amti-3m+1

1 tj-1
2 tk+1

3 +

 ∑
j
2

m=1
bmti-3m+3

1 tj
2tk
3,

wheream,bm
 and

 

cm,ndepend
 

on
 

i+1,j-1
 

and
 

k+1.
Let

 

a0=1
 

and

Pi,j,k = j
jb1-i-1

·

 Pi+1,j-1,k+1-∑
j
2

m=0
amGi-3m+1,j-1,k+1 .

Then
 

similarly,we
 

can
 

check
 

that
 

both
 

Pi,j,k
 and

 

∂Pi,j,k
 satisfy

 

the
 

form
 

given
 

in
 

the
 

theorem,which
 

implies
 

the
 

even
 

case
 

holds,too.
However,it

 

is
 

difficult
 

to
 

express
 

the
 

coeffi-
cients

 

of
 

the
 

reduction
 

rules
 

as
 

in
 

the
 

statement
 

of
 

the
 

theorem
 

above.Actually,the
 

reduction
 

rules
 

can
 

be
 

created
 

by
 

the
 

recurrence

Pi,0,k =
1

i+1
ti+1
1 tk

3

Pi,j,k =αP
i+
3((-1)j-1)

2 +1,j-1,k+1

+∑
j
2

m=0
βmG

i+
3((-1)j-1-2m)

2 +1,j-1,k+1

􀮠

􀮢

􀮡

􀪁
􀪁
􀪁􀪁

􀪁
􀪁
􀪁􀪁

,

where
 

the
 

coefficients
 

α
 

and
 

βm
 depend

 

on
 

i,j,k
 

and
 

satisfy
 

some
 

linear
 

system
 

such
 

that
 

all
 

of
 

the
 

coefficients
 

of
 

tk+1
3

 appearing
 

in
 

∂Pi,j,k
 are

 

equal
 

to
 

zero.So
 

it
 

is
 

hard
 

to
 

use
 

these
 

rules
 

in
 

practice.We
 

do
 

not
 

present
 

a
 

completeness
 

proof
 

for
 

this
 

reduc-
tion

 

system
 

since
 

the
 

proof
 

is
 

similar
 

to
 

the
 

proof
 

of
 

Theorem
 

4
 

in
 

the
 

next
 

subsection.

3.2 A
 

reduction
 

system
 

based
 

on
 

an
 

adapted
order

The
 

reduction
 

system
 

shown
 

above
 

contains
 

complicated
 

coefficients
 

which
 

satisfy
 

some
 

recur-
rences.This

 

gives
 

us
 

a
 

great
 

difficulty
 

to
 

create
 

re-
duction

 

rules
 

efficiently.So
 

we
 

try
 

to
 

use
 

a
 

differ-
ent

 

monomial
 

order,which
 

is
 

induced
 

by
  

0 1 1
2 0 1
0 0 1  

  

to
 

see
 

whether
 

there
 

are
 

some
 

improve-

ments.The
 

order
 

follows
 

from
 

the
 

fact
 

that
 

the
 

weighted
 

degree
 

with
 

respect
 

to
 

(2,0,1)
 

of
 

the
 

leading
 

monomial
 

of
 

∂Gi,j,k
 as

 

in
 

Theorem
 

2(i)is
 

e-

qual
 

to
 

another
 

monomial
 

in
 

the
 

lower
 

terms.In
 

order
 

to
 

keep
 

the
 

completeness
 

of
 

the
 

reduction
 

system,we
 

repeat
 

the
 

generic
 

reduction
 

rule
 

as
 

shown
 

in
 

Theorem
 

2(i)in
 

the
 

following
 

theorem
 

and
 

then
 

present
 

new
 

reduction
 

rules
 

due
 

to
 

the
 

new
 

monomial
 

order.
Theorem

 

3.(i)
 

For
 

all
 

i,j,k ∈ Ν
 

with
 

k≥1,

we
 

have
  

∂
ti
1tj+1
2 tk-1

3

j+1􀮩 􀮫􀮪􀪁􀪁 􀪁􀪁
Gi,j,k

  =ti
1tj
2tk
3+

k-1
j+1

ti+1
1 tj+2

2 tk-2
3 +

i
j+1

ti-1
1 tj+1

2 tk-1
3

􀮩 􀮫􀮪􀪁􀪁􀪁􀪁􀪁􀪁􀪁􀪁 􀪁􀪁􀪁􀪁􀪁􀪁􀪁􀪁
lower

 

terms

.

(ii)
 

For
 

all
 

i,j∈Ν
 

with
 

j
 

being
 

odd
 

and
 

i≥j+1
2

,

there
 

is
 

H1
i,j= j-1  !! ∑

j+1
2

m=1

(-1)m+1ti-m
1 tj-2m+1

2 t2m-1
3

j-2m+1  !! 2m-1  !!

with
 

the
 

leading
 

monomial
 

t
i-

 j+1
2

1 ·tj
3,such

 

that
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∂H1
i,j =ti

1tj
2+

j-1  !! ∑
j+1
2

m=1

(-1)m+1(i-m)ti-m-1
1 tj-2m+1

2 t2m-1
3

j-2m+1  !! 2m-1  !!
􀮩 􀮫􀮪􀪁􀪁􀪁􀪁􀪁􀪁􀪁􀪁􀪁􀪁􀪁 􀪁􀪁􀪁􀪁􀪁􀪁􀪁􀪁􀪁􀪁􀪁

lower
 

terms

.

(iii)
 

For
 

all
 

i,j∈Ν
 

with
 

j
 

being
 

even
 

and
 

i≥j
2-1,

there
 

is

H2
i,j =cj,0t

i-j
2+1

1 (t1t22-t23)
j
2 +∑

j
2

m=1
cj,mti-m

1 tj-2m+1
2 t2m-1

3

with
 

the
 

leading
 

monomialt
i-j
2+1

1 tj
3

 such
 

that

∂H2
i,j =ti

1tj
2+∑

j
2

m=1
cj,m i-m  ti-m-1

1 tj-2m+1
2 t2m-1

3

􀮩 􀮫􀮪􀪁􀪁􀪁􀪁􀪁􀪁􀪁 􀪁􀪁􀪁􀪁􀪁􀪁􀪁
lower

 

terms

,

where
 

cj,m ∈C
 

with
 

cj,0=
j-1  !!

i+1-j
4  (j!! )

and

c
j,j2

=(-1)
j
2+1

i-j
2+1  cj,0.

Moreover,there
 

is
 

a j
2+1  × j

2+1  
 

matrix
 

A
 

equaling

i+1  
j
2
0  1

-i
j
2
1  j-1 3

i-1  
j
2
2  j-35

︙ ⋱ ⋱

(-1)
j
2-1

i+2-j
2  

j
2

j
2-1  3j-1

(-1)
j
2 i+1-j

2  
j
2
j
2  1

􀮠

􀮢

􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁􀪁

􀮦

􀮨

􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁􀪁

such
 

that
 

A·

cj,0

cj,1

cj,2

︙

c
j,j2-1

c
j,j2

􀮠

􀮢
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁􀪁

􀮦

􀮨

􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁􀪁

=

1
0
0
︙

0
0

􀮠

􀮢

􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁

􀮦

􀮨

􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁

.

Proof.(i)and(ii)follow
 

from
 

the
 

product
 

rule.
(iii)It

 

is
 

easy
 

to
 

check
 

that
∂H2

i,j = i+1  cj,0+cj,1  ti
1tj
2+

(-1)
j
2 i-j

2+1  cj,0+cj,j2  ti-j
2

1 tj
3+

∑
j
2-1

m=1

(-1)m i+1-m  
j
2
m  cj,0  ti-m

1 tj-2m
2 t2m3 +

∑
j
2-1

m=1

((j-2m+1)cj,m +

(2m+1)cj,m+1)ti-m
1 tj-2m

2 t2m3 +

∑
j
2

m=1
cj,m i-m  ti-m-1

1 tj-2m+1
2 t2m-1

3 .

We
 

denote
 

the
 

above
 

matrix
 

by
 

A =
(am,n)0≤m≤j

2,0≤n≤
j
2

 with

am,0=(-1)m i+1-m  
j
2
m  0≤m ≤j

2  
am,m =j-2m+1 1≤m ≤j

2  
am-1,m =2m-1 1≤m ≤j

2  
am,n =0 otherwise.

􀮠

􀮢

􀮡

􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁

Then
 

by
 

the
 

Laplace
 

expansion
 

with
 

respect
 

to
 

the
 

first
 

column
 

of
 

A ,

detA  =∑
j
2

m=0
i+1-m  

j
2
m  2m-1  !!

j-2m-1  !!.
It

 

follows
 

from
 

Wilf-Zeilberger
 

method
 

that
 

the
 

following
 

identities
 

are
 

satisfied
 

for
 

all
 

nonnegative
 

integers
 

n,in
 

particular,setting
 

n=j
2
,
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∑
n

m=0

n
m  2m-1  !! 2n-2m-1  !!= 2n  !!

∑
n

m=0
m n

m  2m-1  !! 2n-2m-1  !!=
n
2 2n  !!,

which
 

implies
 

detA  = i+1-j
4  j!!  

 

is
 

non-

zero.Thus,we
 

can
 

find
 

a
 

unique
 

nonzero
 

solution
 

c⇀
 

of
 

the
 

linear
 

system
 

A·c⇀=1,0,…,0  t
 

,such
 

that

∂H2
i,j =ti

1tj
2+∑

j
2

m=1
cj,m i-m  ti-m-1

1 tj-2m+1
2 t2m-1

3 .

In
 

particular,cj,0 =
A1,1

detA  
,where

 

A1,1 =

j-1  !!
 

is
 

the
 

1,1  -cofactor
 

of
 

A,and
 

c
j,j2

=

-1  
j
2+1

i-j
2+1  cj,0.

Then
 

the
 

above
 

reduction
 

rules
 

can
 

be
 

easily
 

built
 

up
 

due
 

to
 

linear
 

algebra.Next,we
 

verify
 

the
 

completeness
 

of
 

the
 

above
 

reduction
 

system,i.e.,

explain
 

that
 

the
 

monomials
 

which
 

do
 

not
 

satisfy
 

the
 

conditions
 

shown
 

in
 

Theorem
 

3(i),(ii)and(iii)

cannot
 

be
 

equal
 

to
 

the
 

leading
 

monomial
 

of
 

any
 

de-
rivative.
Theorem

 

4.A
 

nonzero
 

polynomial
 

in
 

C t1,t2,t3  
 

whose
 

support
 

contains
 

only
 

monomials
 

of
 

the
 

form
 

ti
1tj
2

 such
 

that
 

i ≤ j
2 -2

 

for
 

even
 

j,and
 

i≤j-1
2

 

for
 

odd
  

j,does
 

not
 

have
 

an
 

antideriva-

tive
 

in
 

C t1,t2,t3  .
Proof.It

 

is
 

sufficient
 

to
 

consider
 

only
 

monomials
 

ti
1tj
2tk
3

 where
 

j+k=d
 

is
 

the
 

same.So,we
 

let
 

p,q0,

…,qd ∈C[t1]
 

such
 

that
 

ptd
2=∂q,where

q:=∑
d

j=0
qjtj

2td-j
3 .

For
 

d=0,all
 

nonzero
 

polynomials
 

have
 

an
 

in-
tegral

 

since
 

ptd
2=∂q

 

reduces
 

to
 

the
 

identity
 

p=∂q0 

in
 

C t1  
 

and
 

we
 

have
 

∂t1=1.Correspondingly,no
 

monomial
 

ti
1td
2

 with
 

i≤
d
2-2

 

exists
 

in
 

C t1,t2,t3  
 

for
 

d=0.
Now,let

 

d
 

≥
 

1.First,we
 

assume
 

q0=0.Let
 

j∈ 1,…,d  
 

be
 

minimal
 

such
 

that
 

qj≠0.Then,

the
 

part
 

of
 

∂q
 

containing
 

td-j+1
3

 is
 

given
 

by
 

jqjtj-1
2

td-j+1
3 ,which

 

is
 

nonzero
 

in
 

contradiction
 

to
 

ptd
2=∂q.

It
 

follows
 

that
 

q=0
 

and
 

hence
 

p=0.
Now,we

 

assumeq0≠0
 

and
 

let
 

l:=degq0  .
Without

 

loss
 

of
 

generality,we
 

can
 

assume
 

that
 

q0  is
 

monic(otherwise
 

we
 

modify
 

p
 

and
 

all
 

qj
 by

 

dividing
 

them
 

by
 

lc(q0)).Next,we
 

inductively
 

prove
 

the
 

following
 

properties
 

of
 

qj
  for

 

all
 

j∈ 0,…,d  .
1.

 

If
 

j
 

is
 

even,then

degqj  =l+j
2

 

and
 

-1  
j
2coeffqj,t

l+j
2

1  >0.

2.
 

If
 

j
 

is
 

odd,then

degqj  ≤l+j-3
2

 

and
 

-1  
j+1
2coeffqj,t

l+j-
3
2

1  ≥0.

Forj=0,we
 

have
  

degq0  =l
 

and
 

coeff(q0,tl
1)>0

 

by
 

definition.For
 

j=1,the
 

part
 

of
 

∂q
 

containing
 

td
3

 is
 

given
 

by
 

∂q0  td
3 +q1td

3,which
 

is
 

zero
 

by
 

ptd
2 =∂q.

Hence,q1=-∂q0  has
 

degq1  ≤l-1
 

and
 

-1  1

coeffq1,tl-1
1  ≥0,even

 

if
 

l=0.For
  

j≥2,the
 

part
 

of
 

∂q
 

containing
 

tj-1
2 td-j+1

3
 is

 

given
 

by

d-j+2  qj-2t1tj-1
2 td-j+1

3 + ∂qj-1  tj-1
2 td-j+1

3 +jqj

tj-1
2 td-j+1

3 ,which
 

is
 

zero
 

by
 

ptd
2=∂q.Therefore,

qj =-
1
j

d-j+2  qj-2t1+∂qj-1  .

If
 

j
 

is
 

even,then
 

we
 

have

degqj-1  ≤l+j-4
2 <l+j+2

2 =degqj-2  +2

by
 

the
 

induction
 

hypothesis.Consequently,we
 

ob-
tain

degqj  =degqj-2  +1=l+j
2

as
 

well
 

as

-1  
j
2coeffqj,t

l+j
2

1  = -
d-j+2

j -1  
j
2

coeffqj-2,t
l+j-2

2
1  >0

by
 

the
 

induction
 

hypothesis.On
 

the
 

other
 

hand,if
 

j
 

is
 

odd,we
 

have
 

degqj-1  = l + j-1
2 ≥

degqj-2  +2
 

by
 

the
 

induction
 

hypothesis.We
 

also
 

have
 

that
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coeffqj,t
l+j-3

2
1  = -

d-j+2
j

coeffqj-2,t
l+j-5

2
1  

-
2l+j-1
2j

coeffqj-1,t
l+j-1

2
1  .

Altogether,this
 

yields

degqj  ≤degqj-1  -1=l+j-3
2

and
 

-1  
j+1
2coeffqj,t

l+j-3
2

1  
 

≥0
  

by
 

the
 

induction
 

hypothesis.This
 

concludes
 

the
 

induction.
Finally,we

 

observe
 

that
 

the
 

part
 

of
 

∂q
  

contai-
ning

  

td
2

  is
 

given
 

by
  

qd-1t1td
2 + ∂qd  td

2,which
 

im-

plies
 

p=qd-1t1+∂qdby
  

ptd
2=∂q.If

 

d
 

is
 

even,then
 

we
 

obtain
 

that
 

coeffp,t
l+

d
2-1

1  =coeffqd-1,t
l+

d
2-2

1  +

l+
d
2  coeffqd,t

l+
d
2

1  ,

which
 

is
 

different
 

from
 

zero
 

by
 

the
 

properties
 

shown
 

above.Consequently,we
 

have
 

degp  ≥l+
d
2-1≥

d
2-1

 

so
 

that
 

ptd
2

 does
 

not
 

only
 

contain
 

monomials
 

ti
1td
2

 with
 

i≤
d
2-2.If

 

d
 

is
 

odd,then

degqd-1  =l+
d-1
2 >l+

d-3
2 ≥degqd  

by
 

the
 

properties
 

shown
 

above,which
 

implies
 

that

degp  =degqd-1  +1=l+
d+1
2 ≥

d+1
2

Hence,ptd
2

  does
 

not
 

only
 

contain
 

monomials
 

ti
1td
2

 with
  

i≤
d-1
2 .

Example
 

3.Compute
 

the
 

following
 

integrals
 

invol-
ving

 

Aix  :

∫Ai'(x)2dx
 

and
 

∫(45x3-26)Ai(x)5dx.

Consider
 

the
 

differential
 

ring(C[t1,t2,t3],∂)
 

generated
 

by
 

Ai(x)
 

with
∂t1=1,

 

∂t2=t3 and
 

∂t3=t1t2.
We

 

apply
 

the
 

reduction
 

rules
 

in
 

Theorem
 

3
 

to
 

f1=t23 and
 

f2=45t31t52-26t52
as

 

follows:

f1=t23     

=∂G0,0,2-t1t22

=∂G0,0,2-H2
1,2  

=∂-
1
3t

2
1t22+

2
3t2t3+

1
3t1t

2
3  

 and
f2=45t31t52
︸

leading
 

term

-26t52

=∂45H1
3,5  +60t22t33
︸

leading
 

term

-90t1t42t3-26t52

=∂45H1
3,5+60G0,2,3  -130t1t42t3􀮩 􀮫􀮪􀪁􀪁􀪁 􀪁􀪁􀪁

leading
 

term

-26t52

=∂45H1
3,5+60G0,2,3-130G1,4,1  

=∂(-26t1t52+45t21t42t3+20t32t23-60t1t22t33+24t53)

Moreover,the
 

second
 

integral
 

cannot
 

be
 

computed
 

by
 

Mathematica
 

13.1.
In

 

summary,we
 

present
 

two
 

reduction
 

sys-
tems

 

for
 

the
 

differential
 

ring
 

generated
 

by
 

Airy
 

functions
 

due
 

to
 

different
 

monomial
 

orderings
 

and
 

prove
 

that
 

both
 

of
 

them
 

are
 

complete.Then
 

for
 

any
 

polynomial
 

in
 

the
 

above
 

ring,we
 

can
 

determine
 

whether
 

it
 

has
 

an
 

integral
 

in
 

the
 

same
 

ring,and
 

if
 

yes,we
 

can
 

compute
 

such
 

an
 

integral
 

by
 

reduction.
Furthermore,according

 

to
 

the
 

complete
 

reduction
 

system
 

in
 

Theorem
 

3,any
 

polynomial
 

can
 

be
 

de-
composed

 

as
 

a
 

sum
 

of
 

a
 

derivative
 

of
 

another
 

one
 

and
 

a
 

polynomial
 

with
 

minimal
 

leading
 

term,which
 

cannot
 

be
 

reduced
 

anymore.Together
 

with
 

the
 

structure
 

theorem
 

given
 

by
 

Bronstein,we
 

can
 

de-
termine

 

the
 

denominator
 

as
 

well
 

as
 

the
 

logarithmic
 

part
 

of
 

the
 

integral
 

so
 

that
 

we
 

are
 

able
 

to
 

determine
 

the
 

elementary
 

integrability
 

of
 

an
 

element
 

in
 

the
 

differential
 

filed
 

further
 

using
 

a
 

reduction
 

system
 

adapted
 

to
 

the
 

denominator.Later,we
 

will
 

give
 

a
 

more
 

formal
 

way
 

of
 

reduction
 

systems
 

as
 

well
 

as
 

rigorous
 

weighted
 

degree
 

bounds
 

for
 

the
 

integrals.
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艾里函数的完备约化系统
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4040)

摘要:计算某种“闭形式”的不定积分,即符号积分,是计算机代数的一个重要研究领域。在部分实现递归

Risch算法后,人们发现并行积分方法可以实现更高效的算法,其中最著名的算法之一是
 

Risch-Norman
 

算

法。然而,这种方法依赖于积分中无法准确得到的多项式次数的估计。Norman基于完备化思想提供了一

种避免次数估计的替代方法。然而,根据微分域的构造和项序的选择,可能会发生完备化过程不能终止并

产生无限多约化法则的情况。我们将Norman方法优化并应用于在物理学中有重要应用的Airy函数生成

的微分环。通过确定适当的项序,我们用有限个公式表示无限多个约化法则,并给出了Airy函数的两个完

备约化系统。
关键词:符号积分;Risch-Norman算法;无限约化系统
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