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Abstract: The computation of indefinite integrals in certain kind of “closed form”,which is known
as symbolic integration,is an important research subarea of computer algebra. After implementing
the recursive Risch algorithm partly,it was realized that efficient algorithms can be achieved by a
parallel approach. This led to the famous Risch-Norman algorithm. However, this approach relies
on an ansatz with heuristic degree bounds. Norman’s completion-based approach provides an al-
ternative for finding the numerator of the integral avoiding heuristic degree bounds. However,de-
pending on the differential field and on the selected ordering of terms,it may happen that the
completion process does not terminate and yields an infinite number of reduction rules. We apply
Norman’s approach to the differential field generated by Airy functions,which play an important
role in physics. By fixing adapted orderings and analyzing the process in the concrete case, we
present two complete reduction systems for Airy functions by finitely many formulae to denote
infinitely many reduction rules.
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1 Introduction

Symbolic integration is used to calculate cer-
tain“closed form” of integrals by algebraic meth-
ods. Traditionally, algorithms using differential
fields have been developed for that,see e. g.[ 22,5,

20]. Nowadays, symbolic integration based on re-
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duction becomes popular, especially when creative
telescoping plays an important role [3,1,8,9, 2,
16,7,12]. It also has many applications in combi-
natorics,algorithm complexity analysis and mathe-
matical physics,see [ 25] for example.

Liouville’ s Theorem and its various refine-

ments on the structure of elementary integrals are
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the main theoretical foundation for many algorithms
in symbolic integration. Basically, Liouville’s Theorem
tells that a rational expression f in terms of given
functions y; has an integral that is an elementary
expression of the y; if and only if it has an integral

of the form

[r=%+Same,

where a; are constants and u,v, p,are polynomial
expressions in the y; or,in other words, f can be
written as
. u\’ P/i
f :(7> + Za, ;

Risch [ 22, 23] developed an algorithm to deter-
mine whether an elementary function has an ele-
mentary integral. Main parts of the algorithm are
also presented in [15,5]. See [ 24 ] for commentar-
ies and details as well as further developments and
references. Since these algorithms are very involved
because of their recursive structure,a simpler and
more efficient approach was devised: the Risch-
Norman algorithm [19]. It aims at directly finding
candidates for polynomials v and p; and determi-
ning u and «; in the above form of the integral.
Since in general this approach relies on heuristics
so far,it may fail to find an elementary integral e-
ven if the given integrand has one. Nonetheless, the
approach is powerful in practice,rather easy to im-
plement,and can even be generalized to many clas-
ses of integrands for which no other algorithm is a-
vailable. For details, see [14] and [5,Ch. 107, for
example. We will discuss how to find the numera-
tor u later.

For instance, Boettner observed that the fol-
lowing antiderivative cannot be found by recent ex-

tensions of the Risch—Norman algorithm[ 4, Ex.

8. 71.

JAi’(x)zdx:%Ai'(aMz—O—
2 .. y x° . )
?AI(I)AI () *?Al(x) @)

The Airy function Ai(x)satisfies Ai" (x) =z Ai(x)

and can be given by the integral
Al :ircos(i +at)dt
wJo 3

for real x . Its properties and applications in physics are
discussed in [ 26 ] and [11,Ch. 9],for example.
Norman [ 18] proposed improvements to make the
heuristic Risch-Norman algorithm more powerful
by addressing the problem of finding the numera-
tor of the rational part of the integral. Instead of
finding u via an ansatz with undetermined constant
coefficients as explained above, he discussed a re-
duction-based approach to this problem. His reduc-
tion rules are based on identities for fixed v relating
certain numerators u with the corresponding inte-

grands,such as

-2 mre)
y )
which involve parameters in their coefficients and
exponents. To reduce a given term,an instance f as
above used for reducing can only be multiplied by a
constant coefficient to match its leading term with
the given term. In this paper, based on Norman’s
completion-based approach [ 18], we present two
complete reduction systems for Airy functions

which are both infinite.

2 Preliminaries

Let F be a field of characteristic zero. A deri-
vation d on F is an additive map that satisfies the
product rule d(fg)= @f)g + f(Ig) for all [,
g € F . Then (F,9d) forms a differential field. The
set of constant elements in F forms a subfield de-
noted by Const, (F)={f € F | df =0} .

Moreover,we only consider the case where the
field F is given as a purely transcendental exten-
sion F=C(t,,...,t,) of a field of constants C &
Const, (F) by elementst,,...,t, € F that are al-
gebraically independent over C . Hence, J is a C-
linear map on the multivariate rational function

field C(z, 5+

independent functions.

,t,) and ¢, ,+**,¢, model algebraically
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Actually, a derivation on such a field is com-

pletely determined by the elements d¢,,+++,d¢, via

J = 2';:1 (Jt;) «d; ,where d, is the standard partial
derivation with respect to ;. Conversely, any
choice of d¢,,+++,d¢t, € F yields a derivation on F
this way. The following definition is based on [5,
Ch. 10].

Definition. For (F,d) = (C(t,,+*,t,) ,d) with
C & Const, (F) such thatt,**.t,are algebraical-

ly independent over C ,we define the denominator

of d as den(d) ;: = lem (den (It,) ,++ den (It,) )
and to 9 we associate the derivation d:F — F de-
fined by df . =den () « If .

In contrast to d ,the derivation J necessarily maps poly-
nomials to polynomials so that (C [, ,+**,¢, ] ) s a

differential subring of (F,d) .
2.1 Elementary integrals

In order to discuss elementary integration, we
recall several notions in the following,see e. g. [5,
Ch.3]. Let (E,A) and (F,d) be two differential
fields. We say that E is a differential field extension
of F ,or F is a differential subfield of E ,if E con-
tains F and A| =9 . When there is no confusion,
we still denote the derivation Aon E by d . Lett be-
long to a differential extension of F. Then, ¢ is
called a monomial over F if it is transcendental o-
ver F and its derivative belongs to F [z] . It is
called exponential over F ,if its logarithmic deriva-

. dt, . .
tive — s equal to the derivative of some element in
F ;and is said to be logarithmic over F if its deriva-
tive is equal to the logarithmic derivative of some
element in F . For example, exp (x)is exponential
over C(x ) with the usual derivation ddTr » because
exp(x)’/ exp(x)= 1 is the derivative of x ;similarly,

/

log(z) is logarithmic over C(x )by log(z) ' = L
X

We call (E.J) an elementary extension of

(F,d) if there are z,,*, 2, € E such that E =
F(z,,**,2,) and g, is exponential, logarithmic, or
algebraic over (F (z,,**,2,,) ,d) foralli =1,2,
«=,n . Then,we say f € F has an elementary inte-
gral,if there is an elementary extension (E,d) of
(F,d) and g € E such that f =dg ,and we call
such g an elementary integral of f .

For a field (F,d) = (C(ty,**,t,) ,d) as a-
bove,the Risch-Norman algorithm mentioned ear-
lier first determines polynomials v € C [z, .+ ,t, |
and p,,*, p,, € Cltys*,t,] and then solves

the ansatz
X u S Ip;
F=a(%)+ Da 2)
v ; bi
fora;,**,a, € C and the constant coefficients of

u € Clt,

u is chosen based on heuristic degree bounds. Only

*,t,] »where the potential support of

for differential fields (F',d) of certain type, theo-
retical results predict how v and p, .+, p,, have to
be chosen explicitly in order not to miss any solu-
tions,see [ 10,137 and also [ 5,Sec. 10. 4]. In parti-
cular, there is the well-known case of rational func-
tion integration corresponding to (C(z,) ,d) with
dt, =1,where even a comprehensive choice of can-
didate monomials appearing in u can be given
based on f .

Determining u is challenging because of possi-
ble cancellations in the derivative du. In practice,u-
sually various heuristic degree bounds have been
used to determine a finite ansatz for u. In the liter-
ature,the bound

deg, (u) << 1—min(1l,deg, (J¢,)) +

max(deg, (num(/f)),deg, (den(f)))  (3)
on partial degrees is given for elementary F, cf.
[14,5],and in general [ 5] proposes to use the fol-
lowing bound on the total degree.

deg(u) << 1+ deg(num(f)) +
max(0,deg(den(d) ) —max deg(gti)) 4)

In implementations, the bounds

deg(u) <1+deg( — : )+
ged(den(f) ,d(den(f) ))
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max(deg(num (f) ) ,deg(den(f) ) ) (5
on the total degree [6] and
deg, (u) <1+ max(deg,l W),
den(9)
deg, <gcd(den(r7) ,den(f)) >+
deg, (num(f)) ) 6)

on the partial degrees [4] have been used.
Example 1. For the integral (1), we consider the
differential field (C(t,,t,+t5) +d) with dt, =1,
dt, =ty,and Its = t,t,. The generators t,, 1,41,
correspond to the functions x» Ai(x) sand Ai' (x)
respectively. In the notation of (2) ywe havef =13,
i.e. m =0, The integral is given by

uzétlti—kézzzg—%zfﬁ D)
and v = 1. Note that this integral violates all de-
gree bounds (3)—(6)mentioned above.

Thus,we are going to apply an alternative ap-
proach to find the numerator u of the integral by
reduction. This idea comes from [18]. When v and
p: in(2) are given, determining whether the inte-
grand f € C (£,

can be done by reducing it using a sufficiently com-

,t,) has an elementary integral

i

plete set of known terms 9( ) coming from

v
knownq; € C [t;,*
space {d(q/v) | ¢ € CLty,*

,t, ] that generate the whole

., t,]} . Such pairs

(Q(q—'> ,q—’> can be found via a completion proce-
v/ v

dure proposed by Norman starting from pairs

where g; is just a monomial.
2.2 Monomial orders

Usually, a semigroup order on the commuta-
tive monoid of monomials [z;,*,¢,] is called a
monomial order if it satisfiesz; > 1 for all ;. Mono-
mial orders can be induced by matrices acting on
exponent vectors of monomials. A monomial order

is called lexicographic if it can be induced by a per-

mutation matrix. More generally,a monomial order
is called a block order if it can be induced by a ma-
trix which is Cup to permutation of columns) a
block diagonal matrix.

Example 2. Compare the ordering of monomialstt; .
Loty sty tssts and t,tyty s which are shown together
with the images of their exponent wvectors after
applying the matrices below.

o 1 1
0 0 1
1 0 O

1. With the block order induced by

s we

have

< ¢
(2,2,0)

toty
Z,1,0)

<ttty

1,1,1) 2,0, (2,1,1)

0 1 1
2 0 1
0 0 1

2. With the order induced by ,we have

toty < tit; < 1}
(2,1,1)  (2,2,0)  (2,2,2)

tity <
(1,3,1)

< tityt,
(2,3,1)

Moreover sthese orders are going to be used later.

3 Reduction systems for Airy functions

Let Ai(x) be the Airy function, which satis-
fies the second order differential equation y”(x) =

xy (x) . Assume that
dt, =1,9t, =t, and Ity =1,t,.

Then ¢, can be viewed as x , t, can be viewed as
Ai(x) and t; can be viewed as the derivative of
Ai(x) . In addition, (C(t;+t5t3) +d) is the mini-
mal differential field containing the rational func-
tions,the Airy function and any order of its deriva-
tives.

Throughout this section, we consider the dif-
ferential ring C [¢,,¢,,25] with the derivation d,
because the least common denominator of the de-
rivatives of generators is equal to 1. In order to
simplify the integrability problem of an element in

C(t,+t,4t5) , we restrict to integrating polynomi-
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als. Then we can prove that if a polynomial has an
elementary integral, then the integral should also
be a polynomial in C [#,.¢t,,¢5]. Define §: = ? s
2]

then C (¢, ,0,t,) is a tower of monomial extensions
since 0 = —0° ++¢, and d¢, =0t,.

Theorem 1. I f a polynomial f € C [t,+t,415] has
an elementary integral over (C(t,.t,t5) +d) ,then
there exists g € C [ty sty +t5] such that dg = f.

Proof.From Lemma 2 below,it follows that there
d
is no polynomial p € C [£,,t,,t5] \C with ?p €

C [ty+ty+t5] . Therefore, the claim follows from
Theorem 10. 2.1 of [5].

In the following two lemmas, we follow the
convention to say a polynomial is special if it di-
vides its own derivative.

Lemma 1. There are no special polynomials in
CUuDONC) and we have Const (C(t, sty +t5))= C .
Proof. It was shown in [17, Sec. 2. 2. that the Airy
differential equation d°y —t,y =0 has no non-zero

Liouvillian solutions. Consequently®, dy =—* 4+,

does not have an algebraic solution w & C(¢,) ,
since exp(Jw) would be a Liouvillian solution of

the Airy differential equation. Then, by Theorem
3. 4.3 of [5], there is no special polynomial in
C () [0]\C(t,) . Now, Corollary 2. 54 of [20]
yields Const (C (¢, ,0,t,) ) =C .

Lemma 2. Let p.q € C(2,)[¢,.t;] such that Ip =q
e pand p # O.then p,q € C(ty) .

Proof.By Lemma 1,we have Const (C(t)[t,,t,]) =
C . Therefore,by homogeneity of d w. r. t. total de-
gree in t,, ¢y, we have either deg (p) = 0 or
deg(@p) = deg(p). Together, this implies ¢ €&
C(z,) . Hence,by homogeneity of d,each homoge-
neous part h of p satisfies dh =qh . Let h = ft}, with
f€C@[0] and n = deg(p)be the leading hom-
ogeneous part of p. Then,we obtaindh = )t} +
n0fts ywhich impliesdf = (—n0 +q) f,i.e. f €
C (t,)[0] is a special polynomial. By Lemma 1,we

obtain f € C(¢,). Thus, n =0 follows from df =
(—nl +q) f swhich implies p € C(,).

Next, we are going to present two complete
reduction systems for Airy functions with respect
to different monomial orders. A reduction system
can be viewed as a set of polynomial pairs (p.q) €
C[tysst,]7? such that dg = p with p monic. It is
said to be complete if the leading monomial of 9 f
for any f € C [ty,**+t,] can be reduced by some
pair in the system,i. e. , the leading monomial of
df is equal to the leading monomial of p in the
pair. In principle, complete reduction systems can
be computed by the method presented in [18].
However, the algorithm may not terminate and
produce infinitely many parameterized formulas for
such pairs, which is the case in the situations be-
low. It turns out that a subset of these formulas,
which still is infinite,is sufficient to define a com-
plete reduction system. We describe the pattern of
these sufficient reduction rules in the concrete ca-

Ses.
3.1 A reduction system based on a block order

In this subsection,we show a complete reduc-
tion system based on the block order induced by
0 1 1
0 0 1
1 0 O

. The main reason to choose such an or-

der is because for any polynomial p &€ C [, ,¢,+t5] »
the total degree int, and ¢ of p is equal to that of
the derivative of p. So we try to use a block orde-
ring to determine the leading term of polynomials:
first use a degree reverse lexicographic order with
t, <t,.then compare the degree of #,.

Then due to the above monomial order, we

find reduction rules as follows.

@ According to [ 21, p. 70], already Liouville showed that

dy = —y” -+, does not even have a Liouvillian solution.
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Theorem 2. (i) For all i,j .k € N with k > 1,

we have
AT 1) o
9<7 =tithth +
] +1 1¢283
N
G ik
k—1 )
7Z tj+1t Z‘Hth] Zti 2
Z+1 1 3 +] +1 1
lower terms
. . o ] 1+(—17
() Foralli,j.k € Nwithi 2(]?—‘*# ,
there is
L J i+3m—n— + +( l)j
Prou = 30 e IR

n=0 m=0
with ¢,,, € Cdepending oni,j sk such that P, ;,
€ C[t,+ty5t5] and
IP, ;. =111t +
7] [4]
Ea,,,t’l et 4 2 bt

m=1 1—(—1)7
m=——p—

lower terms

with a, +b, € C depending oni,j .k .
Proof. (DIt follows from the product rule.

(i1) We proceed by induction onj. If j =0,then we

can find
tl ltk' »v? )
P, . :;ini and dP; ., P, 1 2y gl
If j =1,we can find
i — plg
P, =——t 1,1} d
i1k k+1 + /3+1 an
G—2)G— 1Dt 1,15
(’)Pl,l,k :[’112Z§_ k+1 1 2bs
EG—1) e !

P41
which match the conditions. Then we assume that

j = 2 and that (ii) holds for j — 1. Note that

J 1 —
(L-‘71+(—1)f: g Jisodd
2 2 j )
[?— j 1s even (8)
1—(—1) {1 j is odd
and ——=
2 0 J is even

First assume j is odd. Then by the induction hypoth-

esis, there exists P, ;.1 in C [t +1,+t5] with

—1 1
i — 2= ]7—1,Which implies that 7 2% ,such

7]
j—1
e

P1211k17§:§:(’mnl

n=0 m=0

2 trxtl+] n
3

and its derivative equals to

=2 gyl ke =82 1 k]
ty Tty +§:amt ty ty; +

m=1

meza gk (9

m=0

According to the generic reduction rule (i), for all
m €N,i =>3m—+2,] €Z andk € N ,we have that
G 39,101 €quals

w1 e L 3m — 2 g

pi R T T et 4
J

i—3m—1 1, k1
-1 ly 1

J
For the following construction, one can note that
. + 1
P> J T2

2 == 3m + 2, but all coeffi-

does not imply ¢

cients a,, of monomials with negative powers of ¢,

are zero anyway since P, 00 € C £y styt5].

In order to cancel the monomials containing
1
5 let
1
A
ok
by
( i—2.j—1.k+1 7Gi72.jfl.ls+l *
=1

E amGi73mfZ.jfl.le+l )
m=1

n
i—1 L?J

N +1
Con i+3m—n—10— >
_ . T, n, ktj—n
= E E ; t Loty +
n=0m=0 0
i1
d a
m i —3m—2 k
> e
m=0 ]
5]
gl Lzd +1
Con i+3m—n— J,
’ 2 ,n ktj—n
= E E t, thty
n=0 m=0 1)0
j—1
2 —1
**m 1+3m—j—— B
+ 27 EIF
m=0

L”J
= Cm nl1 thes

n=0 m=0
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with @, = 1, so that the derivative of P, , is

equal to

j+1

bt + Zaz‘ it Eb,,, e

m=1 m=1
whered,, +b, and ¢, ., depend on the coefficients a,, s
b, andc,
k. Thus, P, ;, and dP, ;, satisly the form in (ii),

which implies that the theorem holds for the odd

in (9) as well as on the exponents i,j »

case.
Next assume that j is even. By the induction hy-

pothesis, there exists

L%

i—1 L2

p - s xRN
il —1 k] [ Lyls

n=0m=0

J—1+1 S J

withi+1> — by (8 ,which implies: —>-——1,

N

such that its derivative is equal to

wof~

it ,1A1 E: 13W+1,1/+1
tl ty + a,ty y oty T+

m=1

i—3m+3 /
E:bmtl tylsz,

m=1

where a,, s0,, andc,, ,depend oni 41,5 —1andk +1.
Leta, =1 and
J
P. L _ e
P —i—1

B
(Piﬂ.]—l,kﬂ - 2 :aanl—anzﬂ.]—l,kﬂ)-
0

Then similarly, we can check that both P, ;, and
P, ;. satisly the form given in the theorem,which
implies the even case holds, too.

However,it is difficult to express the coeffi-
cients of the reduction rules as in the statement of
the theorem above. Actually, the reduction rules

can be created by the recurrence

1
P, = Lt
0.k i1 1 3

P.;,=aP

P oy
AR e et s

2]
+ ZB”?G FENG DY —1—2m)

m=0 e e N AR WA |

where the coefficients « and B,, depend on 7,; .4
and satisfy some linear system such that all of the

coefficients of ¢£™

appearing in dP, ; , are equal to
zero. So it is hard to use these rules in practice. We
do not present a completeness proof for this reduc-
tion system since the proof is similar to the proof

of Theorem 4 in the next subsection.

3.2 A reduction system based on an adapted

order

The reduction system shown above contains
complicated coefficients which satisfy some recur-
rences. This gives us a great difficulty to create re-

duction rules efficiently. So we try to use a differ-

ent monomial order, which is induced by
0 1 1
2 0 1| to see whether there are some improve-
0 0 1

ments. The order follows from the fact that the
weighted degree with respect to (2,0,1) of the
leading monomial of dG, ; , as in Theorem 2(i)is e-
qual to another monomial in the lower terms. In
order to keep the completeness of the reduction
system, we repeat the generic reduction rule as
shown in Theorem 2 (i) in the following theorem
and then present new reduction rules due to the
new monomial order.

Theorem 3. (i) For all i,j,k € N with k =1,

we have
titi+ltl’ 1
3(7' Tt )=t’1té£ +
j+1
Gt-J./J
k_l'\l 2 k2 i 71 1, k—1
R
J+1 1 2 3 ] +1 2 3
lower terms
j+1
(i) For alli,j € Nwith j being odd and i = =
there is
i+

(_ l)m } ltzfm [/72”, } lZZm*l
G—2m+D Cm—D !l
i+l

with the leading monomial t

2
H,=G-D1l >

m=1

et such that
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IH!, =111} + Civo )
i+l ¢
2 m+l - i—m—1 , j—2m+1 , 2m—1 il
(D" G —mit t 0
G=DI > — S .
= G—2m+DI1! Cm—11!! iz 0
A - _
lower terms
(ii) For alli.j € Nwith j being even and i 2]?*1, Cin 0
- 0
there is €4
_ i Proof. (i)and(ii) follow from the product rule.
i—% Y. -+ - ; j—2 — “ee .
H,?,j = ¢l 2 (13 —t3)* + Zc‘j,,,,t’f"’t{“"’“ti’” ! (iiD It is easy to check that
m=1 -
IH:, =G+ 1) e, +c, ) tith +
i—THl
with the leading monomial t| * t} such that < ] -l
g Lol (D (i~ 1) epnte )Tt
, 2 iy
J
o 2 , . i .
aHIZ,» =i+ oG —m) t177,1flzé72711+1zél,;71 7 J
j 1 MZ:J] j 1 3 ’ 2 —D"GH1—m) | 2 Cin [zlfmtéfbnlim +
lower terms "= 1 7n
where ¢;,,, € Cwith 51
G—DII DG —2m + e, +
Cj.O — - il m=1 ‘ v
(i +1— L) G 2m 41 o0t "ty e +
4 i
and Cim G —m) g Ygitm it
- 1 %H ( j 1) m=1
€= =D Ty 1) We denote the above matrix by A =
7 ] (a,,,.” ) b i Wlth
Moreover sthere is a (? + l) X (3 + 1) matrix A ISy 0SSy
L .
equaling ap,o=(D"G+1—m) (2 ) (Ogm <%>
; m
G+1 (7) 1 ]
0 G =5 —2m +1 (1<m<Z)
NS .
o f) A Aty =2m — 1 (1<m<]§>
@y =0 otherwise.

A
(i—l)(z)
2

35—1

i
(—1>/7<i+1—%) (f) 1
D

such that

Then by the Laplace expansion with respect to the

first column of A ,

o=

det(A)=>,G +1—m)

J
(2 ) @Cm—1) 1
m=0 m
G —2m —1) ).
It follows from Wilf-Zeilberger method that the

following identities are satisfied for all nonnegative

integers n ,in particular,setting n :]? ,
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n

2(7) Cm—D 1 @Cn—2m—1 1= 2n) 1!
m

m=0

n

which implies det (A) = (i +1— %) (11 is non-

zero. Thus,we can find a unique nonzero solution ¢

of the linear system A +¢ =(1,0,+--,0) " ,such that

SIS

2 i E: . i1, 2mtl, 2m]
;)H,-.j =tith + Cj.,n(l_”l)tl B2 S S

m=1

Ay
det(A)

G—D ! isthe (1,1 *cofactorofA,andc} =

i
)

In particular, c¢;, = , where A,, =

J

—17" (i—%Jrl)c,-,o.

Then the above reduction rules can be easily
built up due to linear algebra. Next, we verify the
completeness of the above reduction system.i. e. ,
explain that the monomials which do not satisfy
the conditions shown in Theorem 3(i), (ii)and(iii)
cannot be equal to the leading monomial of any de-
rivative.

Theorem 4. A nonzero polynomial in C [ty +t,,t; ]
whose support contains only monomials of the
J

form t} t} such that i < 5

— 2 for even j,and

—1 . S
i < ]T for odd jsdoes not have an antideriva-

tive in C [tl o1y stg:l .
Proof. 1t is sufficient to consider only monomials
tithth where j +k =d is the same. So,we let p,q, s

--,q, € C[¢,] such that pt¢ =9dq ,where

d

o

qg: = z :f]j[{zta .
j=0

For d =0,all nonzero polynomials have an in-
tegral since pt§ =dq reduces to the identity p =dq,

inC [t,] and we have dt; = 1. Correspondingly,no

oy . d L
monomial £iz5 withi << ——2 exists inC [£, +¢, 25 ]

2
ford =0.

Now,let d = 1. First, we assume ¢, = 0. Let

Sim() @m =D Cu—2m—1D 1= 2w 11,
m 2

Jje {1,

the part of dgq containing ¢’ is given by jq ¢}

sd } be minimal such that ¢; 7 0. Then,

d—j+1
L3

»which is nonzero in contradiction to pt§ = dgq .
It follows that ¢ =0 and hence p =0.

Now,we assume q, 7 0 and let [ : =deg(q,) .
Without loss of generality,we can assume that ¢, is
monic(otherwise we modily p and all ¢; by dividing
them by lc(q,)) . Next, we inductively prove the
following properties of ¢; for allj € {0,--,d} .

1. If j is even,then
dcg(qj):l+%and (— 1) “coeff(q, ) *) >0,

2. If j is odd,then

—3 o =
J 5 and (— 1) coefl(q, 27T =0,

Forj =0,we have deg(q,) ={ and coeff (g, ,t5) >0

deg(%)<£+

by definition. For j = 1,the part of dg containing ¢4 is
given by (dq,) 1§ +q,t%,which is zero by prs = Jq .
Hence, ¢, = —3Jq, hasdeg (¢,) <</ —1land (—1)'
coeff (q,,t7 ") =0,even if { =0. For j = 2,the part
of dg containing ¢} '¢§ '
(d—j+2)q; otith 't57 + g, Dy 't + g,
d—j+1

th e

3

is given by

, which is zero by pt§ =dq . Therefore,
7, :—]i.«d 2 ity £ g, )

If j is even.then we have

deg(q;1) <! Jrj%L <1 +j¥ = deg(q,; ,) +2

by the induction hypothesis. Consequently, we ob-

tain
deg(q,) =deg(q, ,) +1=1+ ]?

as well as

i fo d—j+2

(— 1) 7 coeff(q, .t. 7y = ; —1°*

coeff (g, ,l[]+%) >0
by the induction hypothesis. On the other hand,if j

j—1
2

deg(q;—,) + 2 by the induction hypothesis. We also

is odd, we have deg(q; ;) = [ + =

have that
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i3 d—j+2 2
coeff(g; ,t[l+ 2y = —]7.+coeff(q_,-,z ,t11+ )
J
21  — 1 it
*+7]‘Coeff(qj71 N
2

Altogether, this yields

3
deg(q;) < deg(q, ])—1:1+JT

i—3

and (— 1) %lcoeff(q, ,/t[l+ ) = 0 by the induction
hypothesis. This concludes the induction.

Finally,we observe that the part of dgq contai-
ning ¢ is given by g, t,t4 + (Iq,)t4 , which im-
plies p =qu1t, +Iq,by pts =dq .1{ d is even,then
we obtain that

{
I+5—1

coeff(p,t, ) =coeff(q,, ,ZII#TZ )+

(l + %) coeff(q, ,t[1+%) R

which is different from zero by the properties
shown above. Consequently,we have deg(p) =1 +

d d
Z 1> =
2 1/2

— 1 so that pt4 does not only contain

— 2. 1f d is odd,then

) ; . d
monomials ¢} ¢ with i < >

d—1 d—3
deg(QJ71)=l+T>Z+T>deg(q4)

by the properties shown above,which implies that

d+1_ d+1
dcg<p>:dcg<q“>+1:z+%>%

Hence, pty does not only contain monomials ¢} ¢
. d—1
withi < ———.
2
Example 3. Compute the following integrals invol-

ving Ai(x)
JAi/(I)ZdI and J(451‘3 —26)Ai(x) dx.

Consider the differential ring (CLt,, ty, £5],9)
generated by Ai(x) with
dt, =1, Idt, =t; and It; =1,1,.
We apply the reduction rules in Theorem 3 to
fi=t;and f,=45t5t; — 261,
as follows :
fi=1
2

=39G0 —LiL;

=9(Goo.. —HI D
1,,, 2 1
:9<—§[%Zg+gfzf3+§tlt§)

and
f, =45t315 — 261,
=J(U5H, ) +60t5¢5 —90t,¢9t, — 262,
zpmn
=J(U5H ;5 + 60G,.,.;) — 1302, 151, — 2615
— 9 titats

leading term

=JdU5H ;.5 +60G,.5., — 130G, .,.))

=9(—26¢,t; 45ttt + 206515 — 60t 2505 + 24¢3)
Moreover sthe second integral cannot be com puted
by Mathematica 13.1.

In summary, we present two reduction sys-
tems for the differential ring generated by Airy
functions due to different monomial orderings and
prove that both of them are complete. Then for any
polynomial in the above ring, we can determine
whether it has an integral in the same ring,and if
yes,we can compute such an integral by reduction.
Furthermore, according to the complete reduction
system in Theorem 3, any polynomial can be de-
composed as a sum of a derivative of another one
and a polynomial with minimal leading term,which
cannot be reduced anymore. Together with the
structure theorem given by Bronstein, we can de-
termine the denominator as well as the logarithmic
part of the integral so that we are able to determine
the elementary integrability of an element in the
differential filed further using a reduction system
adapted to the denominator. Later, we will give a
more formal way of reduction systems as well as

rigorous weighted degree bounds for the integrals.
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