摘要 | 河流健康评价是现代水资源、环境与生态管理领域的关键工具, 旨在为河流管理和保护提供科学依据。本文探讨了在过去50年中河流健康评价的方法、发展历程及其在国内外的应用与研究进展。研究表明, 河流健康评价从静态到动态、从单一到综合评估的转变, 主要体现在多学科交叉评价、数学模型应用和生物多样性指标的重要性增强上。国内外的评价方法包括基于水质、生物多样性、生态完整性等维度的多指标评估体系, 它们在处理多指标、非线性关系和不确定性方面具有优势。但也存在模型复杂性和不确定性处理能力不足等挑战。未来发展的方向包括完善评价指标体系、提高数据获取和分析的精准性、增强模型的可解释性与可操作性, 并整合人工智能与大 数据技术, 以开发更加智能、高效的河流健康评价模型, 为全面推动河流生态保护与管理提供科学支持。 |
Abstract | River health assessment is a key tool in the field of modern water resources, environment and ecological management, which aims to provide scientific basis for river management and protection. This article discusses the methods, development history, and application and research progress at home and abroad in the past 50 years. Studies have shown that the transformation of river health assessment from static to dynamic and dynamic and from single to comprehensive assessment, is mainly reflected in the importance of multi-disciplinary cross-evaluation, mathematical model application and biological diversity indicators. The evaluation methods at home and abroad include a multi-indicator evaluation system based on water quality, biological diversity, and ecological integrity, which have advantages in processing multi-indicator, non-linear relationship and uncertainty. However, there are also challenges such as the complexity and uncertain processing capacity of models. The direction of future development includes improving e evaluation index system, enhancing the accuracy of data acquisition and analysis, strengthening the explanatory and operability of models, and integrtaing e artificial intelligence and big data technology to develop more intelligent and efficient river health evaluation model, providing scientific support for the comprehensive promotion of river ecological protection and management. |
DOI | 10.48014/pceep.20240910001 |
文章类型 | 综 述 |
收稿日期 | 2024-09-10 |
接收日期 | 2024-10-06 |
出版日期 | 2024-12-28 |
关键词 | 河流健康评价, 生态系统, 环境指标, 数学模型, 多学科交叉 |
Keywords | River health assessment, ecosystem, environmental indicators, mathematical models, interdisciplinary integration |
作者 | 罗晓1, 刘芝俊2, 高湘1,* |
Author | LUO Xiao1, LIU Zhijun2, GAO Xiang1,* |
所在单位 | 1. 河北科技大学环境科学与工程学院, 石家庄 050018 2. 河北科技大学建筑工程学院, 石家庄 050018 |
Company | 1. College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China 2. College of Architecture and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China |
浏览量 | 276 |
下载量 | 156 |
基金项目 | 河北省社会科学基金项目(HB23GL008)、河北省科技重点研发计划项目(21373904D)。 |
参考文献 | [1] Chrea S, Tudesque L, Chea R. Comparative assessment of water quality classification techniques in the largest north-western river of Cambodia(Sangker River-Tonle Sap Basin)[J]. Ecological Indicators, 2023, 154: 110759. https://doi.org/10.1016/j.ecolind.2023.110759 [2] 王紫麟. 基于河流生态修复理论的城市河流景观设计研究[D]. 北京: 北京林业大学, 2020. https://doi.org/10.26949/d.cnki.gblyu.2019.000518 [3] 娄雅宁. 河流生态修复的伦理研究[D]. 南京: 南京林业 大学, 2019. https://doi.org/10.27242/d.cnki.gnjlu.2019.000084 [4] 郭文献, 王艳芳, 徐建新. 河流生境研究综述[J]. 华北水利水电大学学报(自然科学版), 2015, 36(03): 21-23. https://doi.org/10.3969/j.issn.1002-5634.2015.03.005 [5] 罗坤. 城市化背景下河流健康评价研究[D]. 重庆: 重庆大学, 2017. [6] Wu F F, Wang X. Eutrophication evaluation based on set pair analysis of Baiyangdian Lake, North China[J]. Procedia Environmental Sciences, 2012, 13: 1030-1036. https://doi.org/10.1016/j.proenv.2012.01.096 [7] Wan X, Yang T, Zhang Q, et al. A novel comprehensive model of set pair analysis with extenics for river health evaluation and prediction of semi-arid basin-A case study of Wei River Basin, China[J]. Science of The Total Environment, 2021, 775: 145845. https://doi.org/10.1016/j.scitotenv.2021.145845 [8] Yuyang Wang, Jianrui Ge, Yongming Zhang, et al. Health assessment of the current situation of rivers and discussion on ecological restoration strategies: A case study of the Gansu province section of the Bailong river[J]. Ecological Indicators, 2024, 163, 112038. https://doi.org/10.1016/j.ecolind.2024.112038 [9] Oli C C, Offor C C, Ezeudu E C, et al. Exposure hazards of As in semi-urban rivers of Anambra, South-East Nigeria: Concentrations, source apportionments, health risks, and irrigation quality assessments[J]. HydroResearch, 2024, 7: 181-190. https://doi.org/10.1016/j.hydres.2024.03.003 [10] Ma D, Luo W, Yang G, et al. A study on a river health assessment method based on ecological flow[J]. Ecological modelling, 2019, 401: 144-154. https://doi.org/10.1016/j.ecolmodel.2018.11.023 [11] Hu H, Liu L, Wei X Y, et al. Revolutionizing aquatic eco-environmental monitoring: Utilizing the RPA-Cas- FQ detection platform for zooplankton[J]. Science of The Total Environment, 2024: 172414. https://doi.org/10.1016/j.scitotenv.2024.172414 [12] Nakhle P, Stamos I, Proietti P, et al. Environmental monitoring in European regions using the sustainable development goals(SDG)framework[J]. Environmental and Sustainability Indicators, 2024, 21: 100332. https://doi.org/10.1016/j.indic.2023.100332 [13] Fentaw G, Mezgebu A, Wondie A, et al. Ecological health assessment of Ethiopian wetlands: Review and synthesis[J]. Environmental and Sustainability Indicators, 2022, 15: 100194. https://doi.org/10.1016/j.indic.2022.100194 [14] 董哲仁. 国外河流健康评估技术[J]. 水利水电技术, 2005(11): 15-19. https://doi.org/10.3969/j.issn.1000-0860.2005.11.005 [15] 蔡守华, 胡欣. 河流健康的概念及指标体系和评价方法[J]. 水利水电科技进展, 2008(01): 23-27. doi:10.3880/j.issn.1006-7647.2008.01.007 [16] 熊文, 黄思平, 杨轩. 河流生态系统健康评价关键指标研究[J]. 人民长江, 2010, 41(12): 7-12. doi:10.3969/j.issn.1001-4179.2010.12.002 [17] 李荣, 孙本诚. 河流健康评价研究———以太湖县长河为例[J]. 水利技术监督, 2023(09): 147-149+162. https://doi.org/10.3969/j.issn.1008-1305.2023.09.038 [18] 王娟, 牛晓宇, 孙亚玲. 甘肃省黑河中游段河流生态系统健康评价[J]. 陕西水利, 2023(09): 80-83. https://doi.org/10.16747/j.cnki.cn61-1109/tv.2023.09.050 [19] 宫远乔, 刘莹, 李铁男等. 基于改进AHP-模糊综合评价的河湖健康评价研究———以哈尔滨市阿什河为例[J]. 环境科学与管理, 2023, 48(08): 183-188. https://doi.org/10.3969/j.issn.1673-1212.2023.08.037 [20] 周上博, 袁兴中, 刘红等. 基于不同指示生物的河流健康评价研究进展[J]. 生态学杂志, 2013, 32(08): 2211-2219. https://doi.org/10.13292/j.1000-4890.2013.0424 [21] Bian R, Huang S, Cao X, et al. Spatial and temporal distribution of the microbial community structure in the receiving rivers of the middle and lower reaches of the Yangtze River under the influence of different wastewater types[J]. Journal of Hazardous Materials, 2024, 462: 132835. https://doi.org/10.1016/j.jhazmat.2023.132835 [22] Hernandez-Ramirez A G, Martinez-Tavera E, Rodriguez- Espinosa P F, et al. Detection, provenance and associated environmental risks of water quality pollutants during anomaly events in River Atoyac, Central Mexico: A real-time monitoring approach[J]. Science of the Total Environment, 2019, 669: 1019-1032. https://doi.org/10.1016/j.scitotenv.2019.03.138 [23] Naddeo V, Zarra T, Pervez M N, et al. A comparative analysis of ecological status assessment in river water quality under the European Water Framework Directive [J]. Case Studies in Chemical and Environmental Engineering, 2023, 8: 100477. https://doi.org/10.1016/j.cscee.2023.100477 [24] Lau D C P, Brua R B, Goedkoop W, et al. Fatty-acid based assessment of benthic food-web responses to multiple stressors in a large river system[J]. Environmental Pollution, 2023, 337: 122598. https://doi.org/10.1016/j.envpol.2023.122598 [25] Colls M, Arroita M, Larrañaga A, et al. The nutrient uptake bioassay(NUB): A method to estimate the nutrient uptake capacity of biofilms for the functional assessment of river ecosystems[J]. Ecological Indicators, 2023, 154: 110776. https://doi.org/10.1016/j.ecolind.2023.110776 [26] 杨静. 改进的模糊综合评价法在水质评价中的应用[D]. 重庆: 重庆大学, 2014. [27] 王涛, 魏亚妮, 钱会. 权重对水质模糊综合评价的影响[J]. 南水北调与水利科技, 2010, 8(02): 87-90. https://doi.org/10.3969/j.issn.1672-1683.2010.02.024 [28] Julio A. Camargo, Álvaro Alonso. Ecological and toxicologicaleffects of inorganic nitrogen pollution in aquaticecosystems: A global assessment[J]. EnvironmentInternational, 2006, 32(6): 831-849. https://doi.org/10.1016/j.envint.2006.05.002. [29] Kim H G, Kwak I S. Evaluating the necessity of geographicallocality for patterning biological integrity andits responses to multiple stressors in river systems[J]. Ecological Indicators, 2022, 142: 109285. https://doi.org/10.1016/j.ecolind.2022.109285 [30] Cai Z, Zhang Z, Zhao F, et al. Assessment of eco-environmentalquality changes and spatial heterogeneity inthe Yellow River Delta based on the remote sensing ecologicalindex and geo-detector model[J]. EcologicalInformatics, 2023, 77: 102203. https://doi.org/10.1016/j.ecoinf.2023.102203 [31] Liang J, Liu Z, Tian Y, et al. Research on health risk assessmentof heavy metals in soil based on multi-factorsource apportionment: A case study in GuangdongProvince, China[J]. Science of The Total Environment, 2023, 858: 159991. https://doi.org/10.1016/j.scitotenv.2022.159991 [32] Cui H, Liu M, Chen C. Ecological restoration strategiesfor the topography of Loess Plateau based on adaptiveecological sensitivity evaluation: A case study inLanzhou, China[J]. Sustainability, 2022, 14(5): 2858. https://doi.org/10.3390/su14052858 [33] Tian P, Wu H, Yang T, et al. Evaluation of urban waterecological civilization: A case study of three urban agglomerationsin the Yangtze River Economic Belt, China[J]. Ecological Indicators, 2021, 123: 107351. https://doi.org/10.1016/j.ecolind.2021.107351 [34] Liu M, Hao Z, Radu T, et al. Evaluation method forrestoration effect of different sections of small and medium-sized rivers: A case study of the Qingyi River, China[J]. Environmental Research, 2023, 236: 116797. https://doi.org/10.1016/j.envres.2023.116797 [35] Wei D, Kisuno A, Kameya T, et al. A new method forevaluating biological safety of environmental water withalgae, daphnia and fish toxicity ranks[J]. Science of thetotal environment, 2006, 371(1-3): 383-390. https://doi.org/10.1016/j.scitotenv.2006.08.038 [36] Jeffrey Kouton, Sohonan Thomas Tuo, Emmanuel WodebaGuilsou. Thresholds to sustainability: Globalization'simpact on the institutional quality-ecological footprintnexus in Africa[J]. Science of The Total Environment, 2024, 954, 176205. https://doi.org/10.1016/j.scitotenv.2024.176205. [37] Wang S, Chen H, Su W, et al. Research on habitat qualityassessment and decision-making based on Semi-supervisedEnsemble Learning method—Daxia River Basin, China[J]. Ecological Indicators, 2023, 156: 111153. https://doi.org/10.1016/j.ecolind.2023.111153 [38] Liu B, Cao S. Comment: Averaging statistics of multimetricindex leading to an inaccurate evaluation on methodsof defining biological condition of streams/rivers inecological assessment[J]. The Science of the Total Environment, 2018, 649: 1640-1642. https://doi.org/10.1016/j.scitotenv.2018.04.376 [39] 张为玲, 盖永伟, 龙玉桥, 等. 河流功能研究尺度与影响因素探析[J]. 水利发展研究, 2017, 17(10): 27-31+41. https://doi.org/10.13928/j.cnki.wrdr.2017.10.008 [40] Gurjar S K, Shrivastava S, Suryavanshi S, et al. Assessmentof the natural flow regime and its variability in atributary of Ganga River: Impact of land use and landcover change[J]. Environmental Development, 2022, 44: 100756. https://doi.org/10.1016/j.envdev.2022.100756 [41] Zhou Y, Yue D, Li S, et al. Ecosystem health assessmentin debris flow-prone areas: A case study of BailongRiver Basin in China[J]. Journal of Cleaner Production, 2022, 357: 131887. https://doi.org/10.1016/j.jclepro.2022.131887 [42] Robert Costanza. Valuing natural capital and ecosystemservices toward the goals of efficiency, fairness, and sustainability[J]. Ecosystem Services, 2020, 43, 101096. https://doi.org/10.1016/j.ecoser.2020.101096. [43] 赵同谦, 欧阳志云, 王效科, 等. 中国陆地地表水生态系统服务功能及其生态经济价值评价[J]. 自然资源学报, 2003,(04): 443-452. doi:10.11849/zrzyxb.2003.04.008 [44] 任楠波, 刘宏权, 潘增辉等. 基于DPSIR-博弈论组合赋权TOPSIS模型的河北省水资源保障度演进评价[J]. 南水北调与水利科技(中英文), 2023, 21(05): 873-885. https://doi.org/10.13476/j.cnki.nsbdqk.2023.0085 [45] 王乾州. 基于DPSIR模型的三河口水库水生态安全状况评价研究[D]. 西安: 西安理工大学, 2023. https://doi.org/10.27398/d.cnki.gxalu.2023.000662 [46] 范德政, 梅雪梅, 任正龑等. 基于DPSIR 模型的宁夏地区水土资源承载力评价[J]. 水电能源科学, 2023, 41(06): 35-39. https://doi.org/10.20040/j.cnki.1000-7709.2023.20221240 [47] Bai Y, Lin H, Wang C, et al. Digitalizing river aquatic ecosystems[J]. Journal of Environmental Sciences, 2024, 137: 677-680. [48] 李凌云, 高礼, 郑兰香, 等. 宁夏入黄排水沟中典型内分泌干扰物的污染特征与风险评价[J]. 环境科学, 2023, 44(05): 2539-2550. https://doi.org/10.13227/j.hjkx.202206110 [49] Urmi M A, Akbor M A, Sarker S, et al. A pioneeringstudy on endocrine disruptors(phthalates esters)in urbanrivers of Bangladesh: An appraisal of possible riskassessment to ecology and human health[J]. Journal ofHazardous Materials Advances, 2023, 12: 100369. https://doi.org/10.1016/j.hazadv.2023.100369 [50] 张照荷, 陈典, 赵微, 等. 水环境中药物与个人护理品(PPCPs)的环境水平及降解行为研究进展[J]. 岩矿测试, 2023, 42(04): 649-666. https://doi.org/10.15898/j.ykcs.202210260207 [51] 谭江琳, 余薇薇, 黎玥淇, 等. 绿色化纳米零价铁合成及其对水中新污染物的应用研究进展[J/OL]. 环境工程, 1-12[2023-12-25] [52] Tan X, Shi Y, Ma C, et al. Fluoro-functionalized plantbiomass adsorbent: Preparation and application in extractionof trace perfluorinated compounds from environmentalwater samples[J]. Journal of EnvironmentalSciences, 2024, 137(03): 703-715. https://doi.org/10.1016/j.jes.2023.03.023 [53] 王华, 李思琼, 曾一川等. 长江流域微塑料生态风险综合评估[J/OL]. 水资源保护, 1-12[2023-12-25] [54] Hoang H G, Chiang C F, Lin C, et al. Human health risk simulation and assessment of heavy metal contaminationin a river affected by industrial activities[J]. Environmental Pollution, 2021, 285: 117414. https://doi.org/10.1016/j.envpol.2021.117414 [55] Cui L, Wang X, Li J, et al. Ecological and health risk assessmentsand water quality criteria of heavy metals inthe Haihe River[J]. Environmental Pollution, 2021, 290: 117971. https://doi.org/10.1016/j.envpol.2021.117971 [56] Rajan S, Nan diman dalam J R. Environmental healthrisk assessment and source apportion of heavy metalsusing chemometrics and pollution indices in the upperYamuna river basin, India[J]. Chemosphere, 2024, 346: 140570. https://doi.org/10.1016/j.chemosphere.2023.140570 [57] Li Y, Gao L, Niu L, et al. Developing a statisticalweightedindex of biotic integrity for large-river ecologicalevaluations[J]. Journal of Environmental Management, 2021, 277: 111382. https://doi.org/10.1016/j.jenvman.2020.111382 [58] Shan C, Dong Z, Lu D, et al. Study on river health assessmentbased on a fuzzy matter-element extensionmodel[J]. Ecological Indicators, 2021, 127: 107742. https://doi.org/10.1016/j.ecolind.2021.107742 [59] 张宇航, 渠晓东, 彭文启等. 北京市河流生态系统健康评价[J]. 环境科学, 2023, 44(10): 5478-5489. https://doi.org/10.13227/j.hjkx.202210340 [60] Md Abdullah Al Mamun, M. Farhad Howladar, MdAzad Sohail, Assessment of surface water quality usingFuzzy Analytic Hierarchy Process(FAHP): A casestudy of Piyain River's sand and gravel quarry miningarea in Jaflong, Sylhet, Groundwater for Sustainable Development, Volume 9, 2019, 100208, ISSN 2352-801X. https://doi.org/10.1016/j.gsd.2019.03.002. [61] Akoto O, Adopler A, Tepkor H E, et al. A comprehensiveevaluation of surface water quality and potential health riskassessments of Sisa river, Kumasi[J]. Groundwater forSustainable Development, 2021, 15: 100654. https://doi.org/10.1016/j.gsd.2021.100654 [62] Zhao X, Huang G. Urban watershed ecosystem healthassessment and ecological management zoning based onlandscape pattern and SWMM simulation: A case studyof Yangmei River Basin[J]. Environmental Impact AssessmentReview, 2022, 95: 106794. https://doi.org/10.1016/j.eiar.2022.106794 [63] 王国胜. 河流健康评价指标体系与AHP—模糊综合评价模型研究[D]. 广州: 广东工业大学, 2007. [64] Zhang W, Lai T, Li Y. Risk assessment of water supplynetwork operation based on ANP-fuzzy comprehensiveevaluation method[J]. Journal of Pipeline Systems Engineeringand Practice, 2022, 13(1): 04021068. https://doi.org/10.1061/(ASCE)PS.1949-1204.0000602 [65] 吕迎雪, 胡德, 李鑫, 等. 基于模糊数学理论的河道生态效益综合评价[J]. China Harbour Engineering, 2023, 43(11). https://doi.org/10.7640/zggwjs202311004 [66] Deng X, Xu Y, Han L, et al. Assessment of river healthbased on an improved entropy-based fuzzy matter-elementmodel in the Taihu Plain, China[J]. Ecological Indicators, 2015, 57: 85-95. https://doi.org/10.1016/j.ecolind.2015.04.020 [67] Meynell P J, Metzger M, Stuart N. Identifying ecosystemservices for a framework of ecological importancefor rivers in South East Asia[J]. Water, 2021, 13(11): 1602. https://doi.org/10.3390/w13111602 [68] Yates A G, Culp J M, Armanini D G, et al. Enhancingbioassessment approaches: development of a river servicesassessment framework[J]. Freshwater Science, 2019, 38(1): 12-22. https://doi.org/10.1086/701674 [69] Wang H, Huang L, Zhang H, et al. Development of adecision framework for river health and water yield ecosystemservice in watershed[J]. Journal of Hydrology, 2023, 623: 129773. https://doi.org/10.1016/j.jhydrol.2023.129773 [70] Zhang Y, Zang P, Guo H, et al. Wetlands ecological securityassessment in lower reaches of Taoerhe riverconnected with Nenjiang river using modified PSRmodel[J]. HydroResearch, 2023, 6: 156-165. https://doi.org/10.1016/j.hydres.2022.12.003 [71] Tu J, Wan M, Chen Y, et al. Biodiversity assessment inthe near-shore waters of Tianjin city, China based onthe Pressure-State-Response(PSR)method[J]. MarinePollution Bulletin, 2022, 184: 114123. https://doi.org/10.1016/j.marpolbul.2022.114123 [72] Zhang X, Qiao W, Lu Y, et al. Construction and applicationof urban water system connectivity evaluation index systembased on PSR-AHP-Fuzzy evaluation method coupling[J]. Ecological Indicators, 2023, 153: 110421. https://doi.org/10.1016/j.ecolind.2023.110421 [73] Zhao Y W, Zhou L Q, Dong B Q, et al. Health assessmentfor urban rivers based on the pressure, state andresponse framework—A case study of the Shiwuli River[J]. Ecological indicators, 2019, 99: 324-331. https://doi.org/10.1016/j.ecolind.2018.12.023 [74] Zhou S, Ye J, Li J, et al. Identifying intrinsic drivers tochanges in riparian ecosystem services by using PSRframework: A case study of the Grand Canal in Jiangsu, China [J]. Environmental Development, 2022, 43: 100728. https://doi.org/10.1016/j.envdev.2022.100728 [75] Su Y, Li W, Liu L, et al. Health assessment of small-tomediumsized rivers: Comparison between comprehensiveindicator method and biological monitoring method[J]. Ecological Indicators, 2021, 126: 107686. https://doi.org/10.1016/j.ecolind.2021.107686 [76] Zhang Y, Ban X, Li E, et al. Evaluating ecological healthin the middle-lower reaches of the Hanjiang River withcascade reservoirs using the Planktonic index of bioticintegrity(P-IBI)[J]. Ecological Indicators, 2020, 114: 106282. https://doi.org/10.1016/j.ecolind.2020.106282 [77] Lin L, Wang F, Chen H, et al. Ecological health assessmentsof rivers with multiple dams based on the biologicalintegrity of phytoplankton: A case study ofNorth Creek of Jiulong River[J]. Ecological Indicators, 2021, 121: 106998. https://doi.org/10.1016/j.ecolind.2020.106998 [78] 刘思思, 尚光霞, 高欣, 等. 基于大型底栖动物生物完整性的流域水生态健康评价[J]. 环境工程技术学报, 2023, 13(2): 559-566. https://doi.org/10.12153/j.issn.1674-991X.20210326 [79] 蒋孝燕, 陈超, 冯志政, 等. 基于鱼类生物完整性指数的曹娥江流域水生态系统健康评价[J]. 生态与农村环境学报, 2023, 39(6): 767-773. https://doi.org/10.19741/j.issn.1673-4831.2022.0446 [80] 马卓荦, 胡和平, 王赛. 基于B-IBI的东江下游河流生态健康评价[J]. 长江科学院院报, 2023, 40(9): 32. https://doi.org/10.11988/ckyyb.20220331 [81] 杨柳, 张永进, 汪妮, 等. 基于熵权可拓物元模型的河流健康评价[J]. 西安理工大学学报, 2015, 31(02): 189-194. https://doi.org/10.19322/j.cnki.issn.1006-4710.2015.02.013 [82] 高明. 基于改进SPA 模型在河流健康评价中的应用[J]. 水科学与工程技术, 2016(03): 33-36. https://doi.org/10.19733/j.cnki.1672-9900.2016.03.014 [83] 周振民, 樊敏. 基于PSR-改进模糊集对分析模型的河流健康评价[J]. 中国农村水利水电, 2018(12): 77-81+86. https://doi.org/10.3969/j.issn.1007-2284.2018.12.015 [84] Azha S F, Sidek L M, Ahmad Z, et al. Enhancing riverhealth monitoring: Developing a reliable predictivemodel and mitigation plan[J]. Ecological Indicators, 2023, 156: 111190. https://doi.org/10.1016/j.ecolind.2023.111190 [85] 马克迪, 董增川, 金大伟等. 基于改进的POME模糊综合评价模型的江苏省河流生态健康评价[J]. 水电能源科学, 2021, 39(01): 67-70+74. [86] 陆威妤, 刘博, 苏晓鹭, 等. 基于ESG理念的河流健康评价体系构建[J]. 人民长江, 2023, 54(06): 34-40. https://doi.org/10.16232/j.cnki.1001-4179.2023.06.005 [87] 张杰, 蔡德所, 曹艳霞, 等. 评价漓江健康的RIVPACS预测模型研究[J]. 湖泊科学, 2011, 23(01): 73-79. https://doi.org/10.18307/2011.0112 [88] Su M. Emergy-based urban ecosystem health evaluationof the Yangtze River Delta urban cluster in China[J]. Procedia Environmental Sciences, 2010, 2: 689-695. https://doi.org/10.1016/j.proenv.2010.10.078 [89] 李晓峰, 刘宗鑫, 彭清娥. TOPSIS模型的改进算法及其在河流健康评价中的应用[J]. 四川大学学报(工程科学版), 2011, 43(02): 14-21. https://doi.org/10.15961/j.jsuese.2011.02.037 [90] Zhang Z, Li Y, Wang X, et al. Assessment of riverhealth based on a novel multidimensional similaritycloud model in the Lhasa River, Qinghai-Tibet Plateau[J]. Journal of Hydrology, 2021, 603: 127100. https://doi.org/10.1016/j.jhydrol.2021.127100 [91] Shaheen S M, Chen H Y, Song H, et al. Release andmobilization of Ni, Co, and Cr under dynamic redoxchanges in a geogenic contaminated soil: Assessing thepotential risk in serpentine paddy environments[J]. Science of The Total Environment, 2022, 850: 158087. https://doi.org/10.1016/j.scitotenv.2022.158087 [92] Duan Y, Schaefer M V, Wang Y, et al. Experimentalconstraints on redox-induced arsenic release and retentionfrom aquifer sediments in the central Yangtze RiverBasin[J]. Science of the total environment, 2019, 649: 629-639. https://doi.org/10.1016/j.scitotenv.2018.08.205 [93] Liu B, Stevenson R J. Improving assessment accuracy for lake biological condition by classifying lakes withdiatom typology, varying metrics and modeling multimetricindices[J]. Science of the total environment, 2017, 609: 263-271. https://doi.org/10.1016/j.scitotenv.2017.07.152 [94] Jia H, Zhang Y, Guo Y. The development of a multispeciesalgal ecodynamic model for urban surface watersystems and its application[J]. Ecological modelling, 2010, 221(15): 1831-1838. https://doi.org/10.1016/j.ecolmodel.2010.04.009 [95] Charles F, Nozais C, Pruski A M, et al. Ecodynamics ofPAHs at a peri-urban site of the French MediterraneanSea[J]. Environmental pollution, 2012, 171: 256-264. https://doi.org/10.1016/j.envpol.2012.07.034 [96] Aalipour M, Wu N, Fohrer N, et al. Evaluating the influenceof landscape spatial upscaling on the performanceof river water quality models[J]. Ecological Indicators, 2024, 158: 111607. https://doi.org/10.1016/j.ecolind.2024.111607 [97] Uddin M G, Rahman A, Taghikhah F R, et al. Data-drivenevolution of water quality models: An in-depth investigationof innovative outlier detection approaches-A case studyof Irish Water Quality Index(IEWQI)model[J]. Water Research, 2024, 255: 121499. https://doi.org/10.1016/j.watres.2024.121499 [98] Xia W, Akhtar T, Lu W, et al. Enhanced watershedmodel evaluation incorporating hydrologic signaturesand consistency within efficient surrogate multi-objectiveoptimization[J]. Environmental Modelling & Software, 2024: 105983. https://doi.org/10.1016/j.envsoft.2024.105983 [99] De Paiva M H R, Gomes P C S, Dias L C P, et al. Validationof the MGB-IPH hydrological model for flowssimulation in paired watershed in minas gerais, Brazil[J]. Ecological Modelling, 2024, 491: 110699. https://doi.org/10.1016/j.ecolmodel.2024.110699 [100] Helin R, Indahl U, Tomic O, et al. Non-linear shrinkingof linear model errors[J]. Analytica Chimica Acta, 2023, 1258: 341147. https://doi.org/10.1016/j.aca.2023.341147 [101] 熊伟, 董增川, 卢嘉琪, 等. 基于组合赋权模糊物元可拓模型的渭河流域甘肃段河流健康评价[J]. 水利水电科技进展, 2023, 43(04): 9-14+30. https://doi.org/10.3880/j.issn.1006-7647.2023.04.002 [102] He K, Tang H, He Y, et al. Applicability of macrobenthosindexes in health assessment upstream of alarge river: A case study in the Babian River of theRed River Basin, China[J]. Ecological Informatics, 2023, 74: 101958. https://doi.org/10.1016/j.ecoinf.2022.101958 [103] Zhang J, Wang M, Ren K, et al. The relationship betweenmountain wetland health and water quality: Acase study of the upper Hanjiang River Basin, China[J]. Journal of Environmental Management, 2023, 346: 118998. https://doi.org/10.1016/j.jenvman.2023.118998 [104] Singh R, Kayastha S P, Pandey V P. Climate changeand river health of the Marshyangdi Watershed, Nepal: An assessment using integrated approach[J]. Environmentalresearch, 2022, 215: 114104. https://doi.org/10.1016/j.envres.2022.114104 [105] Zeng L, Wen J, Huang B, et al. Environmental DNAmetabarcoding reveals the effect of environmental selectionon phytoplankton community structure along asubtropical river[J]. Environmental Research, 2024, 243: 117708. https://doi.org/10.1016/j.envres.2023.117708 [106] 张祖鹏, 张泽贤, 刘思远, 等. 太湖流域河流健康评价指标体系研究及应用[J]. 人民长江, 2023, 54(11): 8-15. https://doi.org/10.16232/j.cnki.1001-4179.2023.11.002 [107] 程紫璇, 桑国庆, 彭涛, 等. 山东省河流岸线分类及大汶河岸线资源健康评价[J]. 济南大学学报(自然科学版), 2023, 37(06): 678-686. https://doi.org/10.13349/j.cnki.jdxbn.20230518.001 [108] 刘千禧, 金琪华, 乔海娟, 等. 基于熵值修正G2法的改进多指标河流健康评价[J]. 人民长江, 2023, 54(09): 68-75. https://doi.org/10.16232/j.cnki.1001-4179.2023.09.009 [109] 鲍艳磊, 田冰, 张瑜, 等. 雄安新区河流健康评价[J]. 生态学报, 2021, 41(15): 5988-5997. [110] Singh R, Kayastha S P, Pandey V P. Climate changeand river health of the Marshyangdi Watershed, Nepal: An assessment using integrated approach[J]. Environmentalresearch, 2022, 215: 114104. https://doi.org/10.1016/j.envres.2022.114104 [111] Ren Y, Zhang F, Li J, et al. Ecosystem health assessmentbased on AHP-DPSR model and impacts of climatechange and human disturbances: A case study ofLiaohe River Basin in Jilin Province, China[J]. Ecolog- ical indicators, 2022, 142: 109171. https://doi.org/10.1016/j.ecolind.2022.109171 [112] Mohapatra S C, Kanuri V V, Vaddem K K, et al. Spatio-temporal variability in macroinvertebrate communitystructure and ecological health status of a tropicaldynamic river-estuarine system, India: An integratedapproach of multivariate analysis[J]. EnvironmentalResearch, 2023, 238: 117236. https://doi.org/10.1016/j.envres.2023.117236 [113] 吴阿娜. 河流健康评价: 理论、方法与实践[D]. 上海: 华东师范大学, 2008. [114] 吴阿娜, 杨凯, 车越, 等. 河流健康状况的表征及其评价[J]. 水科学进展, 2005(04): 602-608. https://doi.org/10.3321/j.issn:1001-6791.2005.04.023 [115] Yang Z, Wang Y. The cloud model based stochasticmulti-criteria decision making technology for riverhealth assessment under multiple uncertainties[J]. Journal of hydrology, 2020, 581: 124437. https://doi.org/10.1016/j.jhydrol.2019.124437 [116] Zhang Z, Li Y, Wang X, et al. Assessment of riverhealth based on a novel multidimensional similaritycloud model in the Lhasa River, Qinghai-Tibet Plateau[J]. Journal of Hydrology, 2021, 603: 127100. https://doi.org/10.1016/j.jhydrol.2021.127100 [117] Peng J, Zhang S, Han Y, et al. Soil heavy metal pollutionof industrial legacies in China and health risk assessment[J]. Science of the Total Environment, 2022, 816: 151632. https://doi.org/10.1016/j.scitotenv.2021.151632 [118] Pullanikkatil D, Palamuleni L, Ruhiiga T. Assessmentof land use change in Likangala River catchment, Malawi: A remote sensing and DPSIR approach[J]. AppliedGeography, 2016, 71: 9-23. https://doi.org/10.1016/j.apgeog.2016.04.005 [119] 杜甫, 闫晓惠, 陈小强. 基于Delft 3D的大辽河水动力水质数值模拟[J/OL]. 水电能源科学, 2024(01): 32-35+161. https://doi.org/10.20040/j.cnki.1000-7709.2024.20230238 [120] 刘洁, 陈昊辉, 张丰帆, 等. 基于改进遗传算法的河流水质模型多参数识别[J]. 东北农业大学学报, 2020, 51(01): 73-82. https://doi.org/10.19720/j.cnki.issn.1005-9369.2020.01.009 [121] Su Y, Li W, Liu L, et al. Health assessment of smallto-medium sized rivers: Comparison between comprehensiveindicator method and biological monitoringmethod[J]. Ecological Indicators, 2021, 126: 107686. https://doi.org/10.1016/j.ecolind.2021.107686 [122] Luo H, Wang C, Li C, et al. Multi-scale carbon emissioncharacterization and prediction based on land useand interpretable machine learning model: A casestudy of the Yangtze River Delta Region, China[J]. Applied Energy, 2024, 360: 122819. https://doi.org/10.1016/j.apenergy.2024.122819 [123] Ahmed A A M, Jui S J J, Sharma E, et al. An advanceddeep learning predictive model for air quality indexforecasting with remote satellite-derived hydro-climatologicalvariables[J]. Science of The Total Environment, 2024, 906: 167234. https://doi.org/10.1016/j.scitotenv.2023.167234 [124] Yu Q, Zheng Y, Zhang P, et al. Genetic programmingbasedpredictive model for the Cr removal effect of in-situelectrokinetic remediation in contaminated soil[J]. Journalof Hazardous Materials, 2023, 460: 132430. https://doi.org/10.1016/j.jhazmat.2023.132430 [125] Paul K I, Polglase P J, Richards G P. Predicted changein soil carbon following afforestation or reforestation, and analysis of controlling factors by linking a C accountingmodel(CAMFor)to models of forest growth(3PG), litter decomposition(GENDEC)and soil Cturnover(RothC)[J]. Forest Ecology and Management, 2003, 177(1-3): 485-501. https://doi.org/10.1016/S0378-1127(02)00454-1 [126] Xue J, Yuan C, Ji X, et al. Predictive modeling of nitrogenand phosphorus concentrations in rivers using amachine learning framework: A case study in an urban-rural transitional area in Wenzhou China[J]. Scienceof the Total Environment, 2024, 910: 168521. https://doi.org/10.1016/j.scitotenv.2023.168521 [127] Chen S, Huang J, Wang P, et al. A coupled model toimprove river water quality prediction towards addressingnon-stationarity and data limitation[J]. WaterResearch, 2024, 248: 120895. https://doi.org/10.1016/j.watres.2023.120895 |
引用本文 | 罗晓, 刘芝俊, 高湘. 河流健康评价技术综述[J]. 中国生态环境保护进展, 2024, 2(4): 33-47. |
Citation | LUO Xiao, LIU Zhijun, GAO Xiang. A review of river health assessment techniques[J]. Progress in Chinese Eco-Environmental Protection, 2024, 2(4): 33-47. |