2024年4月29日 星期一
微波技术在不同领域节能减排的应用
Application of Microwave Technology in Different Fields for Energy Saving and Emission Reduction
摘要

当今世界, 由于能源需求上升所导致的能源供应安全和温室气体排放正严重威胁着能源可持续发展, 推进能源结构改革迫在眉睫。微波作为一种清洁、环保的绿色能源, 近年来发展迅速。与传统加热方式不同, 微波加热是通过极性分子的随机运动而产生热量。这导致微波加热具有选择性加热、升温速度快、易于控制、加热效率高等优势。这使得微波可以在推进能源结构改革中做出贡献。本文调查了在不同行业中使用微波技术节能减排的情况, 发现在炼铁行业中, 微波可以加快铁矿石还原的时间, 减少二氧化碳的排放, 同时在铁矿石预处理过程中可以使铁矿石变得更加容易破碎和磁选。在食品行业中, 微波可以缩短食品烹饪和干燥所需的时间, 并最大程度上保留食品的营养成分。在废物回收领域, 微波在更短的时间内缩小了底放射性废物的体积, 提高了废旧橡胶的脱硫效率。在布杜尔反应中, 微波降低了反应所需的温度, 提高了二氧化碳的转化率。总结了微波技术的优点后, 本文还分析了微波技术目前存在的缺陷, 介绍了微波相关的专利, 最后对微波技术的未来进行了展望。

Abstract

In today's world, security of energy supply and greenhouse gas emissions due to rising energy demand are seriously threatening sustainable energy development, and it is urgent to promote energy structure reform. Microwave, as a clean and environmentally friendly green energy source, has developed rapidly in recent years. Unlike traditional heating methods, microwave heating generates heat through the random motion of polar molecules. This results in microwave heating having the advantages of selective heating, fast temperature rise, easy control and high heating efficiency. This allows microwaves to make a contribution in advancing the reform. of the energy mix. This paper investigates the use of microwave technology in different industries to save energy and reduce emissions. It finds that in the ironmaking industry, microwaves can speed up the reduction time of iron ore, reduce carbon dioxide emissions, while making iron ore more easier to crush and magnetically sort during iron ore pretreatment process. In the food industry, microwaves can reduce the time required to cook and dry, and maximise the retention of nutrients in food. In the field of waste recycling, microwaves reduce the volume of bottom radioactive waste in a shorter time and improve the efficiency of desulphurisation of waste rubber. In the Budur reaction, microwaves reduce the temperature required for the reaction and increase the conversion of carbon dioxide. After summarising the advantages of microwave technology, this paper also analyses the current shortcomings of microwave technology, introduces microwave-related patents and concludes with an outlook on the future of microwave technology.  

DOI10.48014/csdr.20230406001
文章类型综 述
收稿日期2023-04-06
接收日期2023-04-17
出版日期2023-06-28
关键词微波技术, 能源可持续发展, 节能减排, 绿色, 能源结构改革
KeywordsMicrowave technology, sustainable energy development, energy saving and emission reduction, green, energy structure change
作者李雨辰
AuthorLI Yuchen
所在单位卡迪夫大学, 卡迪夫 CF24 3AA, 英国
CompanyCardiff University, Cardiff, UK, CF24 3AA
浏览量337
下载量129
参考文献[1] ABAS N, KALAIR A, KHAN N. Review of fossil fuels and future energy technologies[J]. Futures, 2015, 69: 31-49.
https://doi.org/10.1016/j.futures.2015.03.003
[2] IEA. SDG7: Data and Projections[EB/OL].(2022-04)[2023-04-06].
https://www.iea.org/reports/sdg7-data-and-projections
[3] 国家统计局. 中华人民共和国2022年国民经济和社会发展统计公报[EB/OL].(2023-02-28)[2023-04-06].
http://www.stats.gov.cn/sj/zxfb/202302/t20230228_1919011.html
[4] NOAA. State of the Climate: Global Climate Report for 2022[EB/OL].(2023-01-12)[2023-04-06].
https://www.ncei.noaa.gov/access/monitoring/monthlyreport/global/202213
[5] NOAA. Carbon dioxide now more than 50% higher than preindustrial levels 2022[EB/OL].(2022-05-03)[2023-04-06].
https://www.noaa.gov/news-release/carbon-dioxidenow-more-than-50-higher-than-pre-industrial-levels
[6] WMO. Provisional State of the Global Climate in 2022 [EB/OL].(2022-09-01)[2023-04-06].
https://public.wmo.int/en/our-mandate/climate/wmostatement-state-of-global-climate
[7] MYSIAK J, SURMINSKI S, THIEKEN A, et al. Brief communication: Sendai framework for disaster risk reduction- success or warning sign for Paris? [J]. Natural Hazards and Earth System Sciences, 2016, 16(10): 2189-2193.
https://doi.org/10.5194/nhess-16-2189-2016
[8] FIELD C B, BARROS V R. Climate change 2014-Impacts, adaptation and vulnerability: Regional aspects [M]. Cambridge University Press, 2014.
[9] SABELSTRöM N, HAYASHI M, YOKOYAMA Y, et al. XRD In Situ Observation of Carbothermic Reduction of Magnetite Powder in Microwave Electric and Magnetic Fields[J]. Steel Research International, 2013, 84(10): 975-981.
https://doi.org/10.1002/srin.201200307
[10] DU Y. Advances in carbon-based microwave absorbing materials[Z]. MDPI. 2022: 1359.
https://doi.org/10.3390/ma15041359
[11] FUKUSHIMA J, TAKIZAWA H. In situ spectroscopic analysis of the carbothermal reduction process of iron oxides during microwave irradiation[J]. Metals, 2018, 8(1): 49.
https://doi.org/10.3390/met8010049
[12] MASKAN M. Microwave/air and microwave finish drying of banana[J]. Journal of Food Engineering, 2000, 44(2): 71-78.
https://doi.org/10.1016/S0260-8774(99)00167-3
[13] MEREDITH R J. Engineers' handbook of industrial microwave heating[M]. Iet, 1998.
[14] METAXAS A A, MEREDITH R J. Industrial microwave heating[M]. IET, 1983.
[15] ISHIZAKI K, NAGATA K, HAYASHI T. Production of pig iron from magnetite ore-coal composite pellets by microwave heating[J]. ISIJ International, 2006, 46(10): 1403-9.
https://doi.org/10.2355/isijinternational.46.1403
[16] CHUN T, LONG H, DI Z, et al. Influence of microwave heating on the microstructures of iron ore pellets with coal during reduction[J]. Ironmaking & Steelmaking, 2017, 44(7): 486-91.
https://doi.org/10.1080/03019233.2016.1215960
[17] ZHONG S, GEOTZMAN H E, BLEIFUSS R L. Reduction of iron ore with coal by microwave heating[J]. Mining, Metallurgy & Exploration, 1996, 13(4): 174-8.
[18] ISHIZAKI K, NAGATA K. Selectivity of microwave energy consumption in the reduction of Fe3O4 with carbon black in mixed powder[J]. ISIJ International, 2007, 47(6): 811-6.
https://doi.org/10.2355/isijinternational.47.811
[19] HE Z J, JIN Y L, ZHANG H. Experiment Study on the High-Phosphorus Hematite Carbothermal Reduction in Microwave Field; proceedings of the Advanced Materials Research, F, 2011[C]. Trans Tech Publ.
https://doi.org/10.4028/www.scientific.net/AMR.291-294.1317
[20] HARA K, HAYASHI M, SATO M, et al. Pig iron making by focused microwave beams with 20 kW at 2. 45 GHz[J]. ISIJ International, 2012, 52(12): 2149-57.
https://doi.org/10.2355/isijinternational.52.2149
[21] HOTTA M, HAYASHI M, NISHIKATA A, et al. Complex permittivity and permeability of SiO2 and Fe3O4 powders in microwave frequency range between 0. 2 and 13. 5 GHz[J]. ISIJ International, 2009, 49(9): 1443-8.
https://doi.org/10.2355/isijinternational.49.1443
[22] WALKIEWICZ J W, MCGILL S, MOYER L. Improved grindability of iron ores using microwave energy[J]. MRS Online Proceedings Library, 1988, 124(1): 297-302.
[23] KUMAR P, SAHOO B, DE S, et al. Iron ore grindability improvement by microwave pre-treatment[J]. Journal of Industrial and Engineering Chemistry, 2010, 16(5): 805-12.
https://doi.org/10.1016/j.jiec.2010.05.008
[24] JAVAD KOLEINI S, BARANI K, REZAEI B. The effect of microwave treatment on dry grinding kinetics of iron ore[J]. Mineral Processing and Extractive Metallurgy Review, 2012, 33(3): 159-69.
https://doi.org/10.1080/08827508.2011.562947
[25] OMRAN M, FABRITIUS T, MATTILA R. Thermally assisted liberation of high phosphorus oolitic iron ore: a comparison between microwave and conventional furnaces[J]. Powder Technology, 2015, 269: 7-14.
https://doi.org/10.1016/j.powtec.2014.08.073
[26] XU B J, CHEN K, HUANG C J. Microwave Heating in Iron Ore Magnetization Roasting the Current Status; proceedings of the Applied Mechanics and Materials, F, 2013[C]. Trans Tech Publ.
https://doi.org/10.4028/www.scientific.net/AMM.303-306.2611
[27] BARANI K, KOLEINI S J, REZAEI B. Magnetic properties of an iron ore sample after microwave heating[J]. Separation and Purification Technology, 2011, 76(3): 331-6.
https://doi.org/10.1016/j.seppur.2010.11.001
[28] OMRAN M, FABRITIUS T, ELMAHDY A M, et al. Effect of microwave pre-treatment on the magnetic properties of iron ore and its implications on magnetic separation[J]. Separation and Purification Technology, 2014, 136: 223-32.
https://doi.org/10.1016/j.seppur.2014.09.011
[29] RATH S S, DHAWAN N, RAO D, et al. Beneficiation studies of a difficult to treat iron ore using conventional and microwave roasting[J]. Powder Technology, 2016, 301: 1016-24.
https://doi.org/10.1016/j.powtec.2016.07.044
[30] YU J, HAN Y, LI Y, et al. Recent advances in magnetization roasting of refractory iron ores: A technological review in the past decade[J]. Mineral Processing and Extractive Metallurgy Review, 2020, 41(5): 349-59.
https://doi.org/10.1080/08827508.2019.1634565
[31] GUO Q, SUN D W, CHENG J H, et al. Microwave processing techniques and their recent applications in the food industry[J]. Trends in Food Science & Technology, 2017, 67: 236-47.
https://doi.org/10.1016/j.tifs.2017.07.007
[32] CHANDRASEKARAN S, RAMANATHAN S, BASAK T. Microwave food processing—A review[J]. Food Research International, 2013, 52(1): 243-61.
https://doi.org/10.1016/j.foodres.2013.02.033
[33] SALAZAR-GONZáLEZ C, MARTíN-GONZáLEZ S, FERNANDA M, et al. Recent studies related to microwave processing of fluid foods[J]. Food and Bioprocess Technology, 2012, 5(1): 31-46.
[34] PóŁTORAK A, WYRWISZ J, MOCZKOWSKA M, et al. Microwave vs. convection heating of bovine Gluteus Medius muscle: impact on selected physical properties of final product and cooking yield[J]. International Journal of Food Science & Technology, 2015, 50(4): 958-65.
https://doi.org/10.1111/ijfs.12729
[35] XU Y, CARTIER A, OBIELODAN M, et al. Nutritional and anti-nutritional composition, and in vitro protein digestibility of Kabuli chickpea(Cicer arietinum L. )as affected by differential processing methods[J]. Journal of Food Measurement and Characterization, 2016, 10(3): 625-33.
[36] JAMES C, BARLOW K E, JAMES S J, et al. The influence of processing and product factors on the quality of microwave pre-cooked bacon[J]. Journal of Food Engineering, 2006, 77(4): 835-43.
https://doi.org/10.1016/j.jfoodeng.2005.08.010
[37] COCCI E, SACCHETTI G, VALLICELLI M, et al. Spaghetti cooking by microwave oven: Cooking kinetics and product quality[J]. Journal of Food Engineering, 2008, 85(4): 537-46.
https://doi.org/10.1016/j.jfoodeng.2007.08.013
[38] GONZALEZ Z, PEREZ E. Evaluation of lentil starches modified by microwave irradiation and extrusion cooking[J]. Food Research International, 2002, 35(5): 415-20.
https://doi.org/10.1016/S0963-9969(01)00135-1
[39] OZKOC S O, SUMNU G, SAHIN S, et al. Investigation of physicochemical properties of breads baked in microwave and infrared-microwave combination ovens during storage[J]. European Food Research and Technology, 2009, 228(6): 883-93.
[40] CHANDRASEKARAN S, RAMANATHAN S, BASAK T. Microwave food processing—A review[J]. Food Research International, 2013, 52(1): 243-61.
https://doi.org/10.1016/j.foodres.2013.02.033
[41] WOJDYŁO A, FIGIEL A, LECH K, et al. Effect of convective and vacuum-microwave drying on the bioactive compounds, color, and antioxidant capacity of sour cherries[J]. Food and Bioprocess Technology, 2014, 7(3): 829-41.
[42] AGHILINATEGH N, RAFIEE S, HOSSEINPOUR S, et al. Optimization of intermittent microwave-convective drying using response surface methodology[J]. Food Science & Nutrition, 2015, 3(4): 331-41.
https://doi.org/10.1002/fsn3.224
[43] HORUZ E, MASKAN M. Hot air and microwave drying of pomegranate(Punica granatum L. )arils[J]. Journal of Food Science and Technology, 2015, 52(1): 285-93.
[44] ZIELINSKA M, MICHALSKA A. Microwave-assisted drying of blueberry(Vaccinium corymbosum L. )fruits: Drying kinetics, polyphenols, anthocyanins, antioxidant capacity, colour and texture[J]. Food Chemistry, 2016, 212: 671-80.
https://doi.org/10.1016/j.foodchem.2016.06.003
[45] SZADZIN'SKA J, ŁECHTAN'SKA J, KOWALSKI S J, et al. The effect of high power airborne ultrasound and microwaves on convective drying effectiveness and quality of green pepper[J]. Ultrasonics Sonochemistry, 2017, 34: 531-9.
https://doi.org/10.1016/j.ultsonch.2016.06.030
[46] DUAN X, ZHANG M, MUJUMDAR A, et al. Trends in microwave-assisted freeze drying of foods[J]. Drying Technology, 2010, 28(4): 444-53.
https://doi.org/10.1080/07373931003609666
[47] WANG Y, ZHANG M, MUJUMDAR A S, et al. Microwave- assisted pulse-spouted bed freeze-drying of stem lettuce slices—Effect on product quality[J]. Food and Bioprocess Technology, 2013, 6: 3530-43.
[48] BHADOURIA V S, AKHTAR M J, MUNSHI P. Lowlevel radioactive waste management using microwave technology[J]. Progress in Nuclear Energy, 2021, 131: 103569.
https://doi.org/10.1016/j.pnucene.2020.103569
[49] ZHANG S, SHU X, CHEN S, et al. Rapid immobilization of simulated radioactive soil waste by microwave sintering[J]. Journal of hazardous materials, 2017, 337: 20-6.
https://doi.org/10.1016/j.jhazmat.2017.05.003
[50] KOMATSU F, TAKUSAGAWA A, WADA R, et al. Application of microwave treatment technology for radioactive wastes[J]. Waste Management, 1990, 10(3): 211-5.
https://doi.org/10.1016/0956-053X(90)90043-K
[51] TU H, DUAN T, DING Y, et al. Preparation of zirconmatrix material for dealing with high-level radioactive waste with microwave[J]. Materials Letters, 2014, 131: 171-3.
https://doi.org/10.1016/j.matlet.2014.05.195
[52] NAM S, UM W. Decontamination of radioactive metal wastes using underwater microwave plasma[J]. Journal of Environmental Chemical Engineering, 2022, 10(1): 107090.
https://doi.org/10.1016/j.jece.2021.107090
[53] BHADOURIA V S, RAY D, AKHTAR M J, et al. An approach towards enhancing the role of microwave heating in low-level radioactive waste management[J]. Progress in Nuclear Energy, 2022, 147: 104180.
https://doi.org/10.1016/j.pnucene.2022.104180
[54] UNDRI A, MEINI S, ROSI L, et al. Microwave pyrolysis of polymeric materials: Waste tires treatment and characterization of the value-added products[J]. Journal of Analytical and Applied Pyrolysis, 2013, 103: 149-58.
https://doi.org/10.1016/j.jaap.2012.11.011
[55] FORMELA K, HEJNA A, ZEDLER L, et al. Microwave treatment in waste rubber recycling-recent advances and limitations[J]. Express Polymer Letters, 2019, 13(6): 565-88.
http://dx.doi.org/10.3144/expresspolymlett.2019.48
[56] AOUDIA K, AZEM S, HOCINE N A, et al. Recycling of waste tire rubber: Microwave devulcanization and incorporation in a thermoset resin[J]. Waste Management, 2017, 60: 471-81.
https://doi.org/10.1016/j.wasman.2016.10.051
[57] LUO M, LIAO X, LIAO S, et al. Mechanical and dynamic mechanical properties of natural rubber blended with waste rubber powder modified by both microwave and sol-gel method[J]. Journal of Applied Polymer Science, 2013, 129(4): 2313-20.
https://doi.org/10.1002/app.38954
[58] ZANCHET A, CARLI L, GIOVANELA M, et al. Use of styrene butadiene rubber industrial waste devulcanized by microwave in rubber composites for automotive application[J]. Materials & Design, 2012, 39: 437-43.
https://doi.org/10.1016/j.matdes.2012.03.014
[59] DE SOUSA F D, SCURACCHIO C H, HU G-H, et al. Devulcanization of waste tire rubber by microwaves[J]. Polymer Degradation and Stability, 2017, 138: 169-81.
https://doi.org/10.1016/j.polymdegradstab.2017.03.008
[60] ZHANG Y, KE C, FU W, et al. Simulation of microwave- assisted gasification of biomass: A review[J]. Renewable Energy, 2020, 154: 488-96.
https://doi.org/10.1016/j.jhazmat.2017.05.003
[61] SINGH S, NECULAES V, LISSIANSKI V, et al. Microwave assisted coal conversion[J]. Fuel, 2015, 140: 495-501.
https://doi.org/10.1016/j.fuel.2014.09.108
[62] HUNT J, FERRARI A, LITA A, et al. Microwave-specific enhancement of the carbon-carbon dioxide(Boudouard)reaction[J]. The Journal of Physical Chemistry C, 2013, 117(51): 26871-80.
https://doi.org/10.1021/jp4076965
[63] DAI H, ZHAO H, CHEN S, et al. A microwave-assisted boudouard reaction: a highly effective reduction of the greenhouse gas CO2 to useful CO feedstock with semi-coke[J]. Molecules, 2021, 26(6): 1507.
https://doi.org/10.3390/molecules26061507
[64] BELLER M. Catalytic carbonylation reactions[M]. Springer, 2006.
[65] RATNASAMY C, WAGNER J P. Water gas shift catalysis[J]. Catalysis Reviews, 2009, 51(3): 325-440.
https://doi.org/10.1080/01614940903048661
[66] FAKHOURI M, RAMASWAMY H. Temperature uniformity of microwave heated foods as influenced by product type and composition[J]. Food Research International, 1993, 26(2): 89-95.
https://doi.org/10.1016/0963-9969(93)90062-N
[67] GOKSOY E, JAMES C, JAMES S. Non-uniformity of surface temperatures after microwave heating of poultry meat[J]. Journal of Microwave Power and Electromagnetic Energy, 1999, 34(3): 149-60.
https://doi.org/10.1080/08327823.1999.11688400
[68] RYYNäNEN S, OHLSSON T. Microwave heating uniformity of ready meals as affected by placement, composition, and geometry[J]. Journal of Food Science, 1996, 61(3): 620-4.
https://doi.org/10.1111/j.1365-2621.1996.tb13171.x
[69] FUNEBO T, OHLSSON T. Microwave-assisted air dehydration of apple and mushroom[J]. Journal of Food Engineering, 1998, 38(3): 353-67.
https://doi.org/10.1016/S0260-8774(98)00131-9
[70] CHEN Z, LI Y, WANG L, et al. Evaluation of the possible non-thermal effect of microwave radiation on the inactivation of wheat germ lipase[J]. Journal of Food Process Engineering, 2017, 40(4): e12506.
https://doi.org/10.1111/jfpe.12506
[71] Jiann-Yang Hwang, Xiaodi Huang. Method for reducing iron oxide and producing syngas. US8540794B2[P]. 2013-09-24.
[72] XU LINBO. Microwave iron making technology and microwave iron making shaft furnace thereof. CN110453026A[P]. 2019-11-15.
[73] XU LINBO. New microwave ironmaking process and equipment thereof. CN110387446A[P]. 2019-10-29.
引用本文李雨辰. 微波技术在不同领域节能减排的应用[J]. 中国可持续发展评论, 2023, 2(2): 25-36.
CitationLI Yuchen. Application of microwave technology in different fields for energy saving and emission reduction[J]. Chinese Sustainable Development Review, 2023, 2(2): 25-36.