2024年5月19日 星期日
基础局部冲刷对跨海斜拉桥结构动力效应的影响分析
Analysis of the Effect of Local Foundation Scouring on the Structural Dynamic Effect of a Cable-Stayed Bridge Across The Sea
摘要

基础冲刷减小了基础对桥梁基础的约束作用, 导致桥梁基础侧向承载力降低。对于跨海大桥, 基础局部冲刷引起桥梁结构的动力效应则更加显著, 从而影响结构的安全性。本文首先计算可能的最大基础局部冲刷深度, 使模拟的基础冲刷工况符合实际工程; 其次采用m法来计算地基土体弹簧的刚度值, 建立反应基础土体对桥梁基础约束的弹性约束模型, 进而建立考虑基础冲刷桥梁有限元模型。在此基础上以琼州海峡跨海公铁两用斜拉桥作为例子, 计算分析风、浪作用下的基础冲刷对跨海斜拉桥动力效应的影响, 得到了基础局部冲刷深度对结构动力效应的影响规律。跨海斜拉桥考虑12m的最大冲刷深度引起的塔顶位移增加14. 65%, 主要原因是基础冲刷减小了基础土对桥梁基础的约束作用, 导致桥梁基础侧向承载力降低, 因此对于未做地基土处理的斜拉桥跨海桥梁结构, 应加强对基础冲刷的检测与监测或提前对基础土做好预防性维修加固处理, 以保证桥梁结构的安全运营。

Abstract

The foundation scour reduces the restraining effect of the foundation on the bridge foundation, resulting in the reduction of the lateral bearing capacity of the bridge foundation. For the cross-sea bridge, the dynamic effect of foundation scour on the bridge structure is more significant, thus affecting the safety of the structure. In this paper, the maximum possible local scouring depth of the foundation is first calculated to make the simulated foundation scouring condition conform. to the actual project. Then, the m-method is adopted to calculate the stiffness value of the foundation soil spring and establish an elastic restraint model that reflects the restraint of the foundation soil on the bridge foundation, thus setting up the finite element model of the bridge with regard to the foundation scouring. On this basis, taking Qiongzhou Strait cross-sea highway and railway dual-purpose cable-stayed bridge as an example, the effect of foundation scour on the dynamic effect of cross-sea cable-stayed bridges under the action of wind and waves is analyzed, and the influence law of the local scour depth of the foundation on the dynamic effect of the structure is determined. The maximum scour depth of 12m is considered to increase the displacement of the top of the tower by 14. 65%, mainly because the foundation scours reduces the restraint effect of the foundation soil on the bridge foundation, resulting in the reduction of the lateral bearing capacity of the bridge foundation. Therefore, for the cross-sea cable-stayed bridge without foundation soil treatment, the detection and monitoring of foundation scour should be strengthened or the preventive maintenance and reinforcement treatment of foundation soil should be done in advance to ensure the safe operation of the bridge structure.  

DOI10.48014/ems.20230114001
文章类型研究性论文
收稿日期2023-01-14
接收日期2023-02-05
出版日期2023-03-28
关键词跨海斜拉桥, 风浪荷载, 动力效应, 基础局部冲刷, m 法
KeywordsSea-crossing cable-stayed bridge, wind and wave loads, dynamic effect, local scour of foundation, the M-method
作者周道成1,2,*, 张博3, 乔东生4
AuthorZHOU Daocheng1,2,*, ZHANG Bo3, QIAO Dongsheng4
所在单位1. 东北林业大学土木工程学院, 哈尔滨 150040
2. 哈尔滨工业大学结构工程灾变与控制教育部重点实验室, 哈尔滨 150090
3. 大连金普新区住房和城乡建设事务服务中心基建工程部, 大连 116602
4. 大连理工大学海岸与海洋工程国家重点实验室, 大连 116024
Company1. Northeast Forestry University, School of Civil Engineering, Harbin 150040, China
2. Harbin Institute of Technology, Key Lab of Structural Engineering Disaster & Control, Ministry of Education, Harbin 150090, China
3. Housing and Urban Rural Construction Affairs Service Center, Department of Infrastructure Engineering Jinpu New District, Dalian 116602, China
4. Dalian University of Technology, State Key Lab of Coastal & Offshore Engineering, Dalian 116024, China
浏览量562
下载量202
参考文献[1] Wardhana K, Hadipriono F C. Analysis of recent bridge failures in the United States[J]. Journal of Performance of Constructed Facilities, 2003, 17(3): 144-150.
https://doi.org/10.1061/(ASCE)0887-3828(2003)17:3(144)
[2] 易仁彦, 周瑞峰, 黄茜. 近15年国内桥梁坍塌事故的原 因和风险分析[J]. 交通科技, 2015, 272(5): 61-64.
https://doi.org/10.3963/j.issn.1671-7570.2015.05.020
[3] Sumer B M, Fredsoe J. Scour around a pile in combined waves and current[J]. Journal of Hydraulic Engineering, 2001, 127(5): 403-411.
https://doi.org/10.1061/(ASCE)0733-9429(2001)127:5(403)
[4] 木林隆, 李偲. 砂性土-黏性土中冲刷对沉井加桩基础水 平承载力影响试验研究[J]. 路基工程, 2018, 197(2): 102-106.
https://doi.org/10.13379/j.issn.1003-8825.2018.02.22
[5] 韩海骞, 熊绍隆, 孙志林. 潮流作用下桥墩局部冲刷深度计算公式的建立与验证[J]. 泥沙研究, 2016(01): 9-13.
https://doi.org/10.16239/j.cnki.0468-155x.2016.01.002
[6] 周玉利, 王亚玲. 桥墩局部冲刷深度的预测[J]. 西安公路交通大学学报, 1999, 19(4): 48-50.
https://doi.org/10.19721/j.cnki.1671-8879.1999.04.014
[7] Melville B W, Chiew Y M, Time scale for local scour at bridge piers[J]. Journal of Hydraulic Engineering, 1999, 125(1): 59-65.
https://doi.org/10.1061/(ASCE)0733-9429(1999)125:1(59)
[8] 董年虎, 段文忠. 国内外非粘性土桥墩局部冲刷计算方法综述[J]. 郑州工业大学学报, 1997,(2): 94-99.
[9] 中华人民共和国行业标准. 铁路工程水文设计规范(TB 10017-99)[S]. 北京: 中国铁道出版社, 1999.
[10] 中华人民共和国行业标准. 公路工程水文勘测设计规范(JTG C30-2002)[S]. 北京: 人民交通出版社, 2002.
[11] Richardson E V, Davis S R. Evaluating Scour at Bridges: 4th edition[M]. Washington D. C. : Federal Highway Administration, 2001.
[12] B. Mutlu. Sumer, Richard J. S Whitehouse, Alf Torum, Scour around coastal structures: a summary of recent research[J]. Coastal Egnineenng, 2001, 44: 153-190.
https://doi.org/10.1016/S0378-3839(01)00024-1
[13] 李林普, 张日向. 波流作用下大直径圆柱体基底周围最大冲刷深度预测[J]. 大连理大学学报, 2003, 43(5): 676-680.
[14] 程永舟, 姜松, 吕行, 等. 波流共同作用下大直径圆柱局部冲刷试验研究[J]. 应用基础与工程科学学报, 2021, 29(3): 606-616.
https://doi.org/10.16058/j.issn.1005-0930.2021.03.007
[15] 秦崇仁, 肖波, 高学平. 波浪水流共同作用下人工岛周 围局部冲刷的研究[J]. 海洋学报, 1994, 16(3): 130-138.
[16] 袁春光, 王义刚, 杨华, 等. 波、流及其共同作用下桩墩局部冲刷问题试验研究现状[J]. 海洋通报, 2019, 38(2): 121-140.
https://doi.org/10.11840/j.issn.1001-6392.2019.02.001
[17] 王勇强, 靳朝晖, 张颖, 等. 海上风电风机基础冲刷研究进展[J]. 武汉理工大学学报(工学版), 2020, 53(s): 237-244.
[18] Wei C X, Zhou D C, Ou J P. Experimental study of the hydrodynamic responses of a bridge tower to waves and wave currents[J]. J. Waterway, Port, Coastal, Ocean Eng. , 2017, 143(3): 04017002.
https://doi.org/10.1061/(ASCE)WW.1943-5460.0000381
[19] Bai X D, Guo A X, Liu H, et al. Experimental investigation on a freestanding bridge tower under wind and wave loads[J]. Structural Engineering and Mechanics, 2016, 57(5): 951-968.
https://doi.org/10.12989/sem.2016.57.5.951
[20] 毕常芸, 徐倩. 桩土动力相互作用简化方法对比研究[J]. 佳木斯大学学报(自然科学版), 2015, 33(04): 481-485.
[21] 周敉, 袁万城, 张玥. 高桩承台基础群桩等效嵌固长度参数分析[J]. 长安大学学报(自然科学版), 2010, 30(03): 47-52.
https://doi.org/10.19721/j.cnki.1671-8879.2010.03.011
[22] 龚纬, 戚冬艳. 桩基础简化模型在桥梁抗震中的应用[J]. 铁道工程学报, 2008(10): 20-23.
[23] 邬晓光, 李艺林, 贺攀, 等. 基于能量法分析大跨连续刚构桥高墩稳定性[J]. 铁道科学与工程学报, 2017, 14(02): 290-295.
https://doi.org/10.19713/j.cnki.43-1423/u.2017.02.013
[24] 樊冰, 李永庆, 宋松林, 安艳涛. 高烈度区深水斜拉桥动水效应及抗震体系研究. 地震工程学报. 2022. 44(5): 1024-1033.
https://doi.org/10.20000/j.1000-0844.20211206001
[25] Liu Chengyin, Jiang Zhaoshuo, Yu Haichang. Safety analysis for bridge pier under nearby road construction and operation[J]. Measurement, 2020, 151(C): 107169.
https://doi.org/10.1016/j.measurement.2019.107169
[26] Liu Haiming, et al. Importance of seismic hydrodynamic pressure for design of bridge pier in deep water from a numerical case study[J]. IOP Conference Series: Earth and Environmental Science, 2019, 330(2): 022032.
https://doi.org/10.1088/1755-1315/330/2/022032
[27] 中华人民共和国交通运输部. 公路桥涵地基与基础设计规范: JTS 3363—2019[S]. 北京: 人民交通出版社, 2019.
[28] Ernst H J. Der E-modul von seilen unter Beruecksichtigung des durchhanges[J]. Der Bauingenieur, 1965, 40(2): 52-55.
[29] 天津大学水文水力学教研室. 海洋石油工程环境水文计算分析[M]. 北京: 石油工业出版社, 1983.
引用本文周道成, 张博, 乔东生. 基础局部冲刷对跨海斜拉桥结构动力效应的影响分析[J]. 工程材料与结构, 2023, 2(1): 1-14.
CitationZHOU Daocheng, ZHANG Bo, QIAO Dongsheng. Analysis of the effect of local foundation scouring on the structural dynamic effect of a cable-stayed bridge across the sea[J]. Engineering Materials and Structures, 2023, 2(1): 1-14.