摘要 | 海洋溢油给生态系统和环境带来了严重的损害, 及时准确地探测海洋表面的溢油对维护海洋生态平衡和保护环境具有至关重要的意义。目前, 在溢油检测方面, 溢油特征选择方法人为主观性强、特征利用效率低、较少涉及多种不同特征组合的应用。为此, 提出一种基于 RF-RFECV海洋溢油特征智能优选策略。通过系统提取Radarsat-2影像的极化特征与纹理特征, 构建多维特征空间。算法自主计算各个特征在溢油、疑似溢油及海水类别中的区分度权重, 最终为Radarsat-2数据筛选出16/18维最优特征组合。实验结果表明, 利用优选后的 特征进行溢油检测, 有效提升了溢油检测的精度, 降低了误检和漏检的情况, 充分证明了算法的有效性。 |
Abstract | Marine oil spills have caused serious damage to the ecosystem and the environment, and timely and accurate detection of oil spills on the ocean surface is of vital significance to the maintenance of the marine ecological balance and the protection of the environment. At present, in terms of oil spill detection, the oil spill feature selection method is artificially subjective, the feature utilisation efficiency is low, and the application of multiple different feature combinations is less involved. For this reason, a RF-RFECV marine oil spill feature intelligent preference strategy based on RF-RFECV is proposed. The polarisation features and texture features of Radarsat-2 images are extracted systematically to construct a multi-dimensional feature space. The algorithm autonomously calculates the differentiation weights of each feature in the categories of oil spill, suspected oil spill and seawater, and finally selects the 16/18-dimensional optimal feature combinations for Radarsat-2 data. The experimental results show that the use of the optimal features for oil spill detection effectively improves the accuracy of oil spill detection, reduces the cases of misdetection and omission, and fully proves the effectiveness of the algorithm. |
DOI | 10.48014/ais.20250310001 |
文章类型 | 研究性论文 |
收稿日期 | 2025-03-10 |
接收日期 | 2025-03-19 |
出版日期 | 2025-03-28 |
关键词 | RF-RFECV, 海洋溢油, 特征优选, 极化SAR |
Keywords | RF-RFECV, marine oil spill, feature selection, polarimetric SAR |
作者 | 王淑祯, 宋冬梅* |
Author | WANG Shuzhen, SONG Dongmei* |
所在单位 | 中国石油大学 (华东) 海洋与空间信息学院, 青岛 266580 |
Company | College of Oceanography and Space Informatics, China University of Petroleum (East China) , Qingdao 266580, China |
浏览量 | 124 |
下载量 | 40 |
基金项目 | 本研究得到国家自然科学基金(资助号:U22A20586,41772350,61371189)、山东省重点研发计划项目(资助号:2019GGX101033)的资助。 |
参考文献 | [1] 魏铼, 胡卓玮. 基于合成孔径雷达影像的海洋溢油纹理特征参数分析[J]. 海洋学报(中文版), 2013, 35(01): 94-103. https://doi.org/10.3969/j.issn.0253-4193.2013.01.011. [2] Lang H, Zhang X, Xi Y, et al. Dark-spot segmentation for oil spill detection based on multifeature fusion classi- fication in single-pol synthetic aperture radar imagery[J]. Journal of Applied Remote Sensing, 2017, 11(1): 015006-015006. https://doi.org/10.1117/1.jrs.11.015006. [3] 马龙, 李颖, 牛莹. 结合纹理的支持向量机合成孔径雷达溢油监测[J]. 中国航海, 2010, 33(01): 75-79. https://doi.org/10.3969/j.issn.1000-4653.2010.01.017. [4] Zhang B, Perrie W, Li X, et al. Mapping sea surface oil slicks using RADARSAT-2 quad-polarization SAR image[J]. Geophysical Research Letters, 2011, 38(10): L10602. https://doi.org/10.1029/2011GL047013. [5] Minchew B, Jones C E, Holt B. Polarimetric analysis of backscatter from the Deepwater Horizon oil spill using L-band synthetic aperture radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(10): 3812-3830. https://doi.org/10.1109/TGRS.2012.2185804. [6] Wenguang W, Fei L, Peng W, et al. Oil spill detection from polarimetric SAR image[C]//IEEE 10th INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING PROCEEDINGS. 2010: 832-835. https://doi.org/10.1109/icosp.2010.5655943. [7] Skrunes S, Brekke C, Eltoft T. An experimental study on oil spill characterization by multi-polarization SAR[C]// EUSAR 2012; 9th European Conference on Synthetic Aperture Radar. 2012: 139-142. https://doi.org/10.1016/0021-9991(92)90317-R. [8] Pottier J S L Eric. Polarimetric Radar Imaging: From Basics to Applications[M]. Boca Raton: CRC Press, 2017. https://doi.org/10.1201/9781420054989. [9] Migliaccio M, Nunziata F, Montuori A, et al. A Multifrequency Polarimetric SAR Processing Chain to Observe Oil Fields in the Gulf of Mexico[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(12): 4729-4737. https://doi.org/10.1109/TGRS.2011.2158828. [10] Cloude S R, Pottier E. A review of target decomposition theorems in radar polarimetry[J]. IEEE Transactions on Geoscience and Remote Sensing, 1996, 34(2): 498-518. https://doi.org/10.1109/36.485127. [11] Lee J S. Refined filtering of image noise using local statistics[ J]. Computer Graphics and Image Processing, 1981, 15(4): 380-389. https://doi.org/10.1016/S0146-664X(81)80018-4. [12] Yang F, Yang J, Yin J. Freeman’s decomposition model based new spill detector[C]//2013 IEEE International Geoscience and Remote Sensing Symposium-IGARSS. Melbourne, Australia: IEEE, 2013: 3211-3214. https://doi.org/10.1109/IGARSS.2013.6723510. |
引用本文 | 王淑祯, 宋冬梅. 基于RF-RFECV的海洋溢油极化SAR特征优选[J]. 交叉科学学报, 2025, 2(1): 10-21. |
Citation | WANG Shuzhen, SONG Dongmei. Feature optimization of marine oil spill polarimetric SAR based on RF-RFECV[J]. Acta Interdisciplinary Science, 2025, 2(1): 10-21. |