2024年5月3日 星期五
3D 氮掺杂多孔碳载Pt催化剂对葡萄糖催化氧化性能研究
3D Nitrogen-Doped Porous Carbon Supported Pt Catalyst for Electrocatalytic Oxidation of Glucose
摘要

葡萄糖燃料电池因其能够持续产生电能而在生物医用领域受到人们广泛关注。该技术的发展在为植入式医疗设备供电的应用中具有很大潜力。但燃料电池中阳极发生的葡萄糖氧化反应效率低, 需要添加催化剂以提高反应效率。铂 (Pt) 催化剂在使用过程中容易团聚而限制了其催化活性和稳定性等性能的提高。针对此问题, 本文以ZIF-8为前驱体制备了具有较大比表面积的三维 (3D) 氮掺杂多孔碳 (NCZIF-8) 材料作为催化剂载体, 在其上负载质量分数为10%的铂纳米粒子 (Pt NPs) , 制备10%Pt/NCZIF-8复合材料。利用XRD、SEM、TEM、Raman和FT-IR等方法对材料进行结构表征, 利用电化学工作站对其电化学性能进行测试。研究表明NCZIF-8载体的加入提高了Pt纳米粒子的分散程度, 提高了催化剂的利用率, 使其在电催化葡萄糖氧化过程中具有良好的催化活性和稳定性。经过300次的循环伏安 (CV) 测试, 10%Pt/NCZIF-8的峰值电流密度在双电层和氧化物区域的电流密度仅下降了21. 12%和8. 59%, 表明该催化剂具有优异的稳定性。这种低载量的贵金属催化剂通过提高催化剂利用率, 不仅能够提高催化效率还能降低材料成本, 在实际应用中极具潜力。

Abstract

Glucose fuel cells have attracted widespread attention in the biomedical field due to their ability to generate electrical energy continuously. The development of this technology has great potential in the application of powering implantable medical devices. However, the efficiency of the glucose oxidation reaction at the anode of the fuel cell is low, and a catalyst needs to be added to improve the reaction efficiency. Platinum (Pt) catalysts are prone to agglomerate during use, which limits the improvement of their properties such as catalytic activity and stability. To address this problem, in this paper, a three-dimensional ( 3D) N-doped porous carbon (NCZIF-8) material with a large specific surface area was prepared as a catalyst carrier using ZIF-8 as a precursor. Low loading rate of platinum (10 wt. %) was prepared (10% Pt/NCZIF-8) and used as catalysts for glucose oxidation reaction. The materials were structurally characterized by XRD, SEM, TEM, Raman and FT-IR, etc. The electrocatalytic properties of the materials were characterized using an electrochemical workstation. It was shown that the incorporation of NCZIF-8 carrier promotes the dispersion of Pt nanoparticles (NPs) and the utilization of the catalyst, which enhances the catalytic activity and stability of catalysts during electrocatalytic glucose oxidation. After 300 times cyclic voltammetry (CV) tests, the peak current density of 10% Pt/NCZIF-8 only decreased by 21. 12% and 8. 59% in the double-layer region and oxygen region, respectively, indicating the excellent stability of the catalyst. This kind of catalyst with low loading rate of precious metal has great potential for its practical application by improving catalyst utilization, which not only improves the catalytic efficiency but also reduces the material cost.  

DOI10.48014/pcms.20230403001
文章类型研究性论文
收稿日期2023-04-03
接收日期2023-04-25
出版日期2023-09-28
关键词ZIF-8, 3D多孔碳, , 电催化氧化葡萄糖
KeywordsZIF-8, 3D porous carbon, platinum, electrocatalytic oxidation of glucose
作者徐鑫, 董旭峰*, 黄昊, 齐民
AuthorXU Xin, DONG Xufeng*, HUANG Hao, QI Min
所在单位大连理工大学 材料科学与工程学院, 大连 116024
CompanySchool of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China
浏览量287
下载量124
基金项目中央高校基本科研业务费(资助号:DUT22YG201)资助
参考文献[1] Purkait T, Dey R S. Fabrication of a membrane-less nonenzymatic glucose-air fuel cell with graphene-cobalt oxide nanocomposite anode and Fe, N-doped biomass carbon cathode[J]. Journal of Electroanalytical Chemistry, 2020, 874: 114467.
https://doi.org/10.1016/j.jelechem.2020.114467
[2] Frei M, Erben J, Martin J, et al. Nanofiber-deposited porous platinum enables glucose fuel cell anodes with high current density in body fluids[J]. Journal of Power Sources, 2017, 362: 168-173.
https://doi.org/10.1016/j.jpowsour.2017.07.001
[3] 颜欢, 丁飞, 王朋辉, 等. 用于植入式器件的电源技术研究进展[J]. 电源技术, 2016, 40(2): 469-472.
https://doi.org/10.3969/j.issn.1002-087X.2016.02.071
[4] Santiago Ó, Navarro E, Raso M A, et al. Review of implantable and external abiotically catalysed glucose fuel cells and the differences between their membranes and catalysts[J]. Applied Energy, 2016, 179: 497-522.
https://doi.org/10.1016/j.apenergy.2016.06.136
[5] 孙乙. 柔性植入式燃料电池电极的制备及其用于自发电神经导管的研究[D]. 北京: 北京科技大学, 2020.
https://doi.org/10.26945/d.cnki.gbjku.2020.000265
[6] Frei M, Martin J, Kindler S, et al. Power supply for electronic contact lenses: Abiotic glucose fuel cells vs. Mg/ air batteries[J]. Journal of Power Sources, 2018, 401: 403-414.
https://doi.org/10.1016/j.jpowsour.2018.08.101
[7] Qazzazie D, Yurchenko O, Urban S, et al. Platinum nanowires anchored on graphene-supported platinum nanoparticles as a highly active electrocatalyst towards glucose oxidation for fuel cell applications[J]. Nanoscale, 2017, 9(19): 6436-6447.
https://doi.org/10.1039/C7NR01391D
[8] Torigoe K, Takahashi M, Tsuchiya K, et al. High-power abiotic direct glucose fuel cell using a gold-platinum bimetallic anode catalyst[J]. ACS Omega, 2018, 3(12): 18323-18333.
https://doi.org/10.1021/acsomega.8b02739
[9] 国红. 纳米多孔金属对葡萄糖的电催化氧化及其在燃料电池中的应用[D]. 天津: 天津理工大学物理学, 2017.
https://doi.org/10.7666/d.D01223011
[10] Le T X H, Bechelany M, Engel A B, et al. Gold particles growth on carbon felt for efficient micropower generation in a hybrid biofuel cell[J]. Electrochimica Acta, 2016, 219: 121-129.
https://doi.org/10.1016/j.electacta.2016.09.135
[11] Zhiani M, Barzi S, Gholamian M, et al. Synthesis and evaluation of Pt/rGO as the anode electrode in abiotic glucose fuel cell: Near to the human body physiological condition[J]. International Journal of Hydrogen Energy, 2020, 45(24): 13496-13507.
https://doi.org/10.1016/j.ijhydene.2020.03.058
[12] 董广. 用于葡萄糖等小分子电化学反应的电催化剂[D]. 济南: 齐鲁工业大学, 2020.
https://doi.org/10.27278/d.cnki.gsdqc.2020.000039
[13] Guo L, Li Z, Marcus K, et al. Periodically Patterned Au- TiO2 heterostructures for photoelectrochemical sensor [J]. ACS Sensors, 2017, 2(5): 621-625.
https://doi.org/10.1021/acssensors.7b00251
[14] Chen K, Deng S, Lu Y, et al. Molybdenum-doped titanium dioxide supported low-Pt electrocatalyst for highly efficient and stable hydrogen evolution reaction[J]. Chinese Chemical Letters, 2021, 32(2): 765-769.
https://doi.org/10.1016/j.cclet.2020.05.030
[15] Vasilenko V, Arkadeva I, Bogdanovskaya V, et al. Glu- cose-oxygen biofuel cell with biotic and abiotic catalysts: Experimental research and mathematical modeling[ J]. Energies(Basel), 2020, 13: 5630.
https://doi.org/10.3390/en13215630
[16] Navaee A, Narimani M, Korani A, et al. Bimetallic Fe15Pt85 nanoparticles as an effective anodic electrocatalyst for non-enzymatic glucose/oxygen biofuel cell [J]. Electrochimica Acta, 2016, 208: 325-333.
https://doi.org/10.1016/j.electacta.2016.05.033
[17] Both Engel A, Bechelany M, Fontaine O, et al. One-pot route to gold nanoparticles embedded in electrospun carbon fibers as an efficient catalyst material for hybrid alkaline glucose biofuel cells[J]. Chem Electro Chem, 2016, 3(4): 629-637.
https://doi.org/10.1002/celc.201500537
[18] 张传香, 陈亚玲, 巩云, 等. 二硫化钼/石墨烯复合材料的一步水热合成及电催化性能[J]. 材料工程, 2020, 48(05): 56-61.
https://doi.org/10.11868/j.issn.1001-4381.2018.001129
[19] Wang X, Chen X Z, Alcântara C C J, et al. MOFBOTS: metal-organic-framework-based biomedical microrobots [J]. Advanced Materials, 2019, 31(27): 1901592.
https://doi.org/10.1002/adma.201901592
[20] 徐丹, 陈秀娟, 范影强, 等. ZnO@ZIF-8作锂离子电池负极材料的电化学性能研究[J]. 功能材料, 2021, 52(6): 6120-6125.
https://doi.org/10.3969/j.issn.1001-9731.2021.06.017
[21] Li M, Xu F, Li H, et al. Nitrogen-doped porous carbon materials: promising catalysts or catalyst supports for heterogeneous hydrogenation and oxidation[J]. Catalysis Science & Technology, 2016, 6(11): 3670-3693.
https://doi.org/10.1039/C6CY00544F
[22] Meng T, Shang N, Zhao J, et al. Facile one-pot synthesis of Co coordination polymer spheres doped macroporous carbon and its application for electrocatalytic oxidation of glucose[J]. Journal of Colloid and Interface Science, 2021, 589: 135-146.
https://doi.org/10.1016/j.jcis.2020.12.119
[23] Zhang P, Sun F, Shen Z, et al. ZIF-derived porous carbon: a promising supercapacitor electrode material[J]. Journal of Materials Chemistry A, 2014, 2(32): 12873-12880.
https://doi.org/10.1039/C4TA00475B
[24] Zhan M, Hussain S, AlGarni T S, et al. Facet controlled polyhedral ZIF-8 MOF nanostructures for excellent NO2 gas-sensing applications[J]. Materials Research Bulletin, 2021, 136: 111133.
https://doi.org/10.1016/j.materresbull.2020.111133
[25] Thomas M, Illathvalappil R, Kurungot S, et al. Graphene oxide sheathed ZIF-8 microcrystals: engineered precursors of nitrogen-doped porous carbon for efficient oxygen reduction reaction(ORR)electrocatalysis [J]. ACS Applied Materials & Interfaces, 2016, 8(43): 29373-29382.
https://doi.org/10.1021/acsami.6b06979
[26] 张俊敏, 谭志龙, 王传军, 等. 碳载体的预处理对Pt/C催化剂结构和性能的影响[J]. 无机化学学报, 2015, 31(1): 140-146.
https://doi.org/10.11862/CJIC.2015.022
[27] 王福兵. PEM 燃料电池 Pt/C 电催化剂制备和性能研究[D]. 天津: 天津大学, 2004.
https://doi.org/10.7666/d.y592081
[28] Zhong H, Wang J, Zhang Y, et al. ZIF-8 derived graphene- based nitrogen-doped porous carbon sheets as highly efficient and durable oxygen reduction electrocatalysts[ J]. Angewandte Chemie International Edition, 2014, 53(51): 14235-14239.
https://doi.org/10.1002/anie.201408990
[29] Zhang P, Sun F, Xiang Z, et al. ZIF-derived in situ nitrogen- doped porous carbons as efficient metal-free electrocatalysts for oxygen reduction reaction[J]. Energy & Environmental Science, 2014, 7(1): 442-450.
https://doi.org/10.1039/c3ee42799d
[30] Sun Y, Duan Y, Hao L, et al. Cornstalk-derived nitrogen- doped partly graphitized carbon as efficient metalfree catalyst for oxygen reduction reaction in microbial fuel cells[J]. ACS Applied Materials & Interfaces, 2016, 8(39): 25923-25932.
https://doi.org/10.1021/acsami.6b06895
[31] Chu T, Lin F, Kuznetsova I, et al. A novel neutral nonenzymatic glucose biofuel cell based on a Pt/Au nanoalloy anode[J]. Journal of Power Sources, 2021, 486: 229374.
https://doi.org/10.1016/j.jpowsour.2020.229374
[32] Pan S, Cai Z, Duan Y, et al. Tungsten diselenide/porous carbon with sufficient active edge-sites as a co-catalyst/ Pt-support favoring excellent tolerance to methanolcrossover for oxygen reduction reaction in acidic medium[ J]. Applied Catalysis B: Environmental, 2017, 219: 18-29.
https://doi.org/10.1016/j.apcatb.2017.07.011
引用本文徐鑫, 董旭峰, 黄昊, 等. 3D氮掺杂多孔碳载Pt催化剂对葡萄糖催化氧化性能研究[J]. 中国材料科学进展, 2023, 2(3): 41-49.
CitationXU Xin, DONG Xufeng, HUANG Hao, et al. 3D nitrogen-doped porous carbon supported Pt catalyst for electrocatalytic oxidation of glucose[J]. Progress in Chinese Materials Sciences, 2023, 2(3): 41-49.