2025年7月7日 星期一
基于效率-规模-预期视角的我国高技术产业 科技自主创新能力测度
Evaluation to Independent Innovation Ability of High-Tech Industry in China Based on Efficiency-Scale-Expectation Perspective
摘要

通过将科技自主创新能力指标解析为创新资源投入产出效率、创新资源占有规模、预期创新进步水平, 测度了全国各省高技术产业的科技自主创新能力。结果表明: ①高技术产业科技自主创新能力强的省份偏少且互相差距较大, 众多创新能力弱的省份彼此差距小且与创新能力强的省份相比存在绝对劣势。东南沿海省份高技术产业利润较高、预期创新水平强大, 产业有进一步扩张趋势, 边陲省份与部分内陆省份则相反, 短期内创新进步空间有限, 两极化趋势明显。②大部分省份生产要素投入与利润产出效率基本同步, 投入和回报匹配; 上海、北京等少数地区利润产出强度高于要素投入强度, 投入产出效率高。黑龙江、贵州等一些高技术产业规模小的省份出现了创新资源投入强度低同时利润回报更低的“未老先衰”异常现象。③深入研究发现, 产生“未老先衰”问题的根源主要在于创新产品生产中的纯技术效率低下, 并经常在投入产出效率低与利润产出强度低之间陷入彼此强化的恶性循环。

Abstract

The independent innovation ability indicator of the high-tech industry is decomposed by the inputoutput efficiency of innovation resources, the possession scale of innovation resources, and the expected level of innovation progress, which will evaluate China’s provincial independent innovation ability of the hightech industry. The results show that: ① There are few provinces with strong scientific and technological independent innovation ability in the high-tech industry, and the gap between them is large, while many provinces with weak innovation ability have a small gap with each other and an absolute inferior position compared with strong innovation ability provinces. The high-tech industry in the southeastern coastal provinces has higher profits, a stronger expected innovation level, and a further industry expansion trend, while some border and inland provinces have only limited space for innovation and progress in the short run, and the obvious polarization trend. ②The factor inputs to profit output efficiency in most provinces are roughly synchronized, and the inputs and returns match with each other: a few regions such as Shanghai and Beijing have higher profit output to factor input intensity, and higher input-output efficiency. Some provinces with small-scale high-tech industries, such as Heilongjiang and Guizhou province, have the abnormal phenomenon of “premature aging”, in which the input intensity of innovation resources is low and the return on profits is even lower. ③Deeper research found that the origin of the “premature aging” problem lies mainly in the low technical production efficiency of innovative products, as well as the self-reinforcing spiral between low input-output efficiency and low profit-output intensity.  

DOI10.48014/jce.20240402005
文章类型研究性论文
收稿日期2024-04-02
接收日期2024-04-30
出版日期2024-09-28
关键词高技术产业, 自主创新, 指标分解法, DEA 模型, 投入产出效率
KeywordsHigh-tech industry, independent innovation, index decomposition method, DEA model, inputoutput efficiency
作者孙波1, 孙泽阳2,*
AuthorSUN Bo1, SUN Zeyang2,*
所在单位1. 湖州师范学院 经济管理学院, 湖州 313000
2. 东华大学旭日工商管理学院, 上海 200051
Company1. School of Economics and Management, Huzhou University, Huzhou 313000, China
2. Glorious Sun School of Business and Management, Donghua University, Shanghai 200051, China
浏览量297
下载量76
基金项目浙江省哲学社会科学领军人才重大项目“数字经济和实体经济深度融合研究”(22YJRC14ZD
参考文献[1] 郝政, 褚泽泰, Kiho Kwak. 集群式创新对高技术企业研发绩效的影响———基于国家自主创新综合示范区高技术产业面板数据的实证研究[J]. 技术经济与管理研究, 2021(10): 43-47.
[2] 金成国, 李达耀, 黄伟新. 进口贸易溢出对高技术产业技术创新的影响———基于PVAR 模型的检验[J/OL]. 企业经济, 2021(12): 135-143[2022-01-08].
https://doi.org/10.13529/J.cnki.enterprise.economy.2021.017.
[3] 郝政, 褚泽泰, Kiho Kwak. 集群式创新对高技术企业研发绩效的影响———基于国家自主创新综合示范区高技术产业面板数据的实证研究[J]. 技术经济与管理研究, 2021(10): 43-47.
[4] 马晶梅, 赵文婧. 自主研发、技术改造与高技术企业创新绩效研究[J]. 科技与管理, 2021, 23(02): 1-7.
https://doi.org/10.16315/j.stm.2021.02.001.
[5] 曹虹剑, 李康. 中国高技术产业自主创新能力的影响因素[J]. 经济数学, 2016, 33(03): 77-82.
https://doi.org/10.16339/j.cnki.hdjjsx.2016.03.011.
[6] 吴和成, 李犟. 中国高技术产业技术创新效率动态演进[J]. 河海大学学报(哲学社会科学版), 2020, 22(03): 58- 65, 107.
[7] 薛阳, 秦金山, 王健康, 等. 中国高技术产业创新效率时空演变研究[J]. 统计与决策, 2022, 38(18): 69-72.
https://doi.org/10.13546/j.cnki.tjyjc.2022.18.013.
[8] Chen Xiaoqing, Liu Xinwang, Gong Zaiwu, et al. Threestage super-efficiency DEA models based on the cooperative game and its application on the R&D green innovation of the Chinese high-tech industry[J]. Computers & Industrial Engineering, 2021, 156:
[9] 刘梦瑶. 东北三省高技术产业R&D 效率水平及其影响因素研究[D]. 延边: 延边大学, 2019.
https://doi.org/10.27439/d.cnki.gybdu.2019.000034.
[10] 陈松奕. 高技术产业绿色创新能力评价指标体系构建及测度[J]. 统计与决策, 2023, 39(03): 174-178.
https://doi.org/10.13546/j.cnki.tjyjc.2023.03.032.
[11] 黄东斌. 高技术产业科技创新驱动绿色发展关联分析[J]. 技术经济与管理研究, 2021(12): 17-21.
[12] 肖鹏, 刘兰风, 魏峰, 等. 区域高技术产业技术创新能力的比较研究[J]. 统计与决策, 2016, 453(09): 114-116.
https://doi.org/10.13546/j.cnki.tjyjc.2016.09.029.
[13] 王洪庆, 侯毅. 中国高技术产业技术创新能力评价研究[J]. 中国科技论坛, 2017(03): 58-63.
https://doi.org/10.13580/j.cnki.fstc.2017.03.008.
[14] Charnes A, Cooper W W, Rhodes E. Measuring the efficiency of decision making units[J]. European Journal of Operational Research, 1978, 2(6): 429-444.
https://doi.org/10.1016/0377-2217(78)90138-8.
引用本文孙波, 孙泽阳. 基于效率-规模-预期视角的我国高技术产业科技自主创新能力测度[J]. 中国经济研究, 2024, 3(3): 37-46.
CitationSUN Bo, SUN Zeyang. Evaluation to independent innovation ability of high-tech industry in China based on efficiency-scale-expectation perspective[J]. Journal of Chinese Economy, 2024, 3(3): 37-46.