2024年6月20日 星期四
混凝土可持续发展:应对碳排放引起气候变化危机
Sustainable Development of Concrete: Tackling the Climate Change Crisis Caused by Carbon Emissions
摘要

混凝土是人类文明在地球上有形足迹的最明显表现之一, 其应用量大面广, 已成为世界上用量最大的人造工程材料。混凝土改变了世界并塑造了人类文明, 在未来仍然不可或缺。但大量混凝土的生产和使用对资源、能源和环境影响巨大, 是全球碳排放重要来源之一。基于大气中二氧化碳浓度导致气候快速变化而威胁人类生存条件的预测, 为推动人类社会和文明的永续发展, 混凝土发展面临严峻挑战。本文首先简要介绍了混凝土的基本知识, 其次总结了混凝土的发展历程, 再次分析了混凝土发展目前面临的挑战, 最后提出了混凝土可持续发展的策略与路线。

Abstract

As one of the most visible manifestations of the tangible footprint of human civilisation on the planet, concrete is largely and widely applied, and has become the most widely used man-made engineering material in the world. Concrete has changed the world and shaped human civilization, and will remain indispensable in the future. However, as one of the major sources of global carbon emissions, the production and application of large quantities of concrete has a huge impact on resource, energy and the environment. Based on the prediction that the rapid climate change, caused by the concentration of carbon dioxide in the atmosphere, will threaten the living conditions of human beings. Thus, the development of concrete is facing serious challenges in order to promote the perpetual development of human society and civilization. This paper firstly introduces the basic knowledge of concrete briefly, then summarizes the development history of concrete, analyzes the challenges of concrete development at present, and finally puts forward strategies and routes for the sustainable development of concrete.

DOI10.48014/ems.20220728001
文章类型综 述
收稿日期2022-07-28
接收日期2022-08-05
出版日期2022-09-28
关键词混凝土, 气候变化, 碳排放, 可持续发展, 策略与路线
KeywordsConcrete, climate change, carbon emissions, sustainable development, strategy and route
作者王欣悦1, 丁思齐2, 董素芬3, 李晓民4, 韩宝国1,*
AuthorWANG Xinyue1, DING Siqi2, DONG Sufen3, LI Xiaomin4, HAN Baoguo1,*
所在单位1. 大连理工大学土木工程学院, 大连 116024
2. 哈尔滨工业大学 (深圳) 土木与环境工程学院, 深圳 518055
3. 大连理工大学交通运输学院, 大连 116024
4. 甘肃省交通规划勘察设计院股份有限公司, 兰州 730010
Company1. School of Civil Engineering, Dalian University of Technology, Dalian 116024, China
2. School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China
3. School of Transportation and Logistics, Dalian University of Technology, Dalian 116024, China
4. Gansu Province Transportation Planning, Survey and Design Institute Co. LTD, Lanzhou 730050, China
浏览量3251
下载量930
基金项目国家自然科学基金项目(项目号:51978127;52178188;51908103);
中国博士后基金(项目号:2022M710973)。
参考文献[1] Han B, Zhang L, Ou J. Smart and Multifunctional Concrete toward Sustainable Infrastructures[M]. Berlin: Springer, 2017.
https://doi.org/10.1007/978-981-10-4349-9
[2] Han B, Ding S, Wang J, et al. Nano-Engineered Cementitious Composites: Principles and Practices[M]. Berlin: Springer, 2019.
https://doi.org/10.1007/978-981-13-7078-6
[3] Mehta P K, Monteiro P J M. Concrete: Microstructure, Properties and Materials[M]. Los Angeles: McGraw- Hill, 2006.
[4] Newman J B, Choo B S. Advanced Concrete Technology Set[M]. Amsterdam: Elsevier, 2003.
https://doi.org/10.1016/B978-0-7506-5686-3.X5246-X
[5] 袁润章. 水泥胶凝过程的本质和基本规律[J]. 科学通报, 1961(7): 25-28.
https://dx.doi.org/10.3969/j.issn.1674-7011.2011.10.005
[6] Gjorv O E, Sakai K. Concrete technology for a sustainable development in the 21st century[M]. Oxford: Taylor and Francis, 2007.
https://doi.org/10.1201/9781482272215
[7] BoydA J, Mindess S. Cement and concrete: Trends and challenges[C]. In: Proceedings of the Anna Maria 2001 Workshop, Florida, 2001.
[8] 冯乃谦, 邢峰. 混凝土与混凝土结构的耐久性[M]. 北京: 机械工业出版社, 2009.
[9] Malier Y. High Performance Concrete: From Material to Structure[M]. Oxford: Taylor and Francis, 1992.
https://doi.org/10.1201/9780203752005
[10] Schneider E D, Kay J J. Order from Disorder: The Thermodynamics of Complexity in Biology, in P. M. Michael, A. J. O. Luke(edited), What is Life: The Next Fifty Years. Reflections on the Future of Biology[M]. Cambridge: Cambridge University Press, 1995: 161-172.
https://doi.org/10.1017/CBO9780511623295
[11] Xi F, Davis S J, Ciais P, et al. Substantial global carbon uptake by cement carbonation[J]. Nature Geoscience, 2016, 9(12): 880-883.
https://doi.org/10.1038/ngeo2840
[12] 过镇海. 混凝土的强度和本构关系: 原理与应用[M]. 北京: 中国建筑工业出版社, 2004.
[13] 陈惠发, 萨里普A F. 土木工程材料的本构方程[M]. 武汉: 华中科技大学出版社, 2001.
[14] Lea F M. The Chemistry of Cement and Concrete(2nd edition)[M]. London: Edward Arnold Ltd, 1956.
[15] Mindess S, Young J F, Darwin D. Concrete(2nd edition)[M]. New Jersey: Prentice Hall, 2002.
[16] Bye G C. Portland Cement: Composition, Production and Properties(2nd edition)[M]. New York: Thomas Telford Publishing, 1999.
[17] Kurdowski W. Cement and Concrete Chemistry[M]. Berlin: Springer. 2014.
https://doi.org/10.1007/978-94-007-7945-7
[18] Shen W, Liu Y, Yan B, et al. Cement industry of China: Driving force, environment impact and sustainable development[J]. Renewable and Sustainable Energy Reviews, 2017, 75: 618-628.
https://doi.org/10.1016/j.rser.2016.11.033
[19] Bensted J, Barnes P. Structure and Performance of Cements(2nd edition)[M]. Oxford: Taylor and Francis, 2008.
https://doi.org/10.1201/9781482295016
[20] Viehland D, Li J F, Yuan L J, et al. Mesostructure of calcium silicate hydrate(C-S-H)gel in Portland cement paste: short-range ordering, nanocrystallinity, and local compositional order[J]. Journal of the American Ceramic Society, 1996, 79(7): 1731-1744.
https://doi.org/10.1111/j.1151-2916.1996.tb07990.x
[21] Michopolulos J G, Farhat C, Fish J. Modeling and simulation of multiphysics systems[J]. ASME-Journal of Computing and Information Science in Engineering, 2005, 5: 198-213.
https://doi.org/10.1115/1.2031269
[22] Hewlett P C. Lea's Chemistry of Cement and Concrete(4th edition)[M]. Amsterdam: Elsevier, 1988.
https://doi.org/10.1016/B978-0-7506-6256-7.X5007-3
[23] Shetty M S. Concrete technology: Theory and Practice[M]. New Delhi: S. Chand and Company, 2005.
[24] Jones R M. Mechanics of Composites Materials[M]. Oxford: Taylor and Francis, 2015.
https://doi.org/10.1115/1.3423688
[25] Young J F, Mindess S, Gragy R J, et al. The Science and Technology of Civil Engineering[M]. New Jersey: Prentice Hall, 1998.
https://doi.org/10.5860/choice.35-5678
[26] Ovrutsky A M, Prokhoda A S, Rasshchupkyna M S. Computational Materials Science: Surfaces, Interfaces, Crystallization[M]. Amsterdam: Elsevier, 2013.
https://doi.org/10.1016/B978-0-12-420143-9.00001-6
[27] Schaffer J P, Saxena A, Antolovich S D, et al. The- Science and Design of Engineering Materials[M]. New York: WCB/McGraw-Hill, 1999.
[28] 杨南如. C-S-H 凝胶结构模型研究新进展[J]. 南京化工大学学报(自然科学版), 1998, 20(2): 78-85.
[29] 沈荣熹, 崔琪, 李清海. 新型纤维增强水泥基复合材料[M]. 北京: 中国建材工业出版社, 2004.
[30] Bentur A, Mindess S. Fibre Reinforced Cementitious Composites, 2nd edition[M]. Oxford: Taylor and Francis, 2006.
https://doi.org/10.1201/9781482267747
[31] 袁润章. 胶凝材料学(第2版)[M]. 武汉: 武汉理工大学出版社, 2005.
[32] Wang J, Dong S, Pang S D, et al. Pore structure characteristics of concrete composites with surface-modified carbon nanotubes[J]. Cement and Concrete Composites, 2022, 128: 104453.
https://doi.org/10.1016/j.cemconcomp.2022.104453
[33] Wang J, Han B, Li Z, et al. Effect investigation of nanofillers on C-S-H gel structure with Si NMR spectra[J]. Journal of Materials in Civil Engineering, 2019, 31(1): 04018352.
https://doi.org/10.1061/(ASCE)MT.1943-5533.0002559
[34] Borst R, Ramm E. Multiscale Methods in Computational Mechanics[M]. Berlin: Springer, 2011.
https://doi.org/10.1007/978-90-481-9809-2
[35] Gibson R F. Principles of Composite Material Mechanics[M]. Boca Raton: CRC Press, 2007.
https://doi.org/10.1201/b14889
[36] Wang X, Dong S, Ashour A, et al. Effect and mechanisms of nanomaterials on interface between aggregates and cement mortars[J]. Construction and Building Materials, 2020, 240: 117942.
https://doi.org/10.1016/j.conbuildmat.2019.117942
[37] Wang X, Dong S, Li Z, et al. Nanomechanical characteristics of interfacial transition zone in nano-engineered concrete[J]. Engineering.
https://doi.org/10.1016/j.eng.2020.08.025
[38] 杨南如. C-S-H凝胶及其研究方法[J]. 硅酸盐通报. 2003,(2): 46-52.
https://dx.doi.org/10.3969/j.issn.1001-1625.2003.02.011
[39] 沈卫国, 甘戈金, 连春明, 等. C-S-H 纳米尺度结构模型研究与收缩机理研究进展[J]. 材料科学, 2012, 2: 1-11.
http://dx.doi.org/10.12677/ms.2012.21001
[40] Han B, Dong S, Ou J, et al. Microstructure related mechanical behaviors of short-cut super-fine stainless wire reinforced reactive powder concrete[J]. Materials and Design, 2016, 96: 16-26.
https://doi.org/10.1016/j.matdes.2016.02.004
[41] 韩宝国, 董素芬, 张立卿, 等. 第六篇: 土木工程功能材料. 书名: 中国战略新兴产业研究与发展———功能材料. 北京: 机械工业出版社, 2016: 195-298.
[42] Han B, Yu X. Ou J. Self-sensing Concrete in Smart Structures[M]. Amsterdam: Elsevier, 2014.
https://doi.org/10.1016/C2013-0-14456-X
[43] Carpinteri A, Ingraffea A. Material Characterization and Testing[M]. Amsterdam: D. Reidel Publishing, 1984.
https://doi.org/10.1115/1.3171793
[44] Dong S, Han B, Ou J, et al. Electrically conductive behaviors and mechanisms of short-cut super-fine stainless wire reinforced reactive powder concrete[J]. Cement and Concrete Composites, 2016, 72: 48-65.
https://doi.org/10.1016/j.cemconcomp.2016.05.022
[45] Han B, Zhang L, Zeng S, et al. Nano-core effect in nanoengineered cementitous composites[J]. Composites Part A: Applied Science and Manufacturing, 2017, 95: 100-109.
https://doi.org/10.1016/j.compositesa.2017.01.008
[46] A. Grumezescu. Fabrication and Self-Assembly of Nanobiomaterials[M]. Amsterdam: Elsevier, 2016.
https://doi.org/10.1016/C2015-0-00353-7
[47] Zhang S, Li L, Kumar A. Materials Characterization Techniques[M]. Boca Raton: CRC Press, 2008.
https://doi.org/10.1201/9781420042955
[48] Ding S, Xiang Y, Ni Y Q, et al. In-situ synthesizing carbon nanotubes on cement to develop self-sensing cementitious composites for smart high-speed rail infrastructures[J]. Nano Today. 2022, 43: 101438.
https://doi.org/10.1016/j.nantod.2022.101438
[49] 徐世烺. 混凝土断裂力学[M]. 北京: 科学出版社, 2011.
[50] American Concrete Institute. ACI committee report 548. 3R-03: Polymer-modified concrete[R]. 2003.
[51] 周济. 超材料与自然材料的融合[M]. 北京: 科学出版社, 2017.
[52] Kondepudi D, Prigogine I. Modern Thermodynamics: From Heat Engines to Dissipative Structures[M]. New Jersey: Wiley, 1998.
https://doi.org/10.1002/9781118698723
引用本文王欣悦, 丁思齐, 董素芬, 等. 混凝土可持续发展: 应对碳排放引起气候变化危机[J]. 工程材料与结构, 2022, 1(1): 1-14.
CitationWANG Xinyue, DING Siqi, DONG Sufen, et al. Sustainable development of concrete: Tackling the climate change crisis caused by carbon emissions[J]. Engineering Materials and Structures, 2022, 1(1): 1-14.