摘要 | 慢性阻塞性肺疾病COPD作为一种常见且严重危害健康的呼吸系统疾病, 深入解析其发病机制及调控网络意义深远。本文以精准揭示 COPD的调控网络为核心目标, 系统且严谨地探究其与多发病生物途径错综复杂的内在联系。研究紧密结合大量实际病例数据, 并广泛参考前沿权威文献, 运用先进的数据挖掘模型以及精细的网络调控模型, 着力构建蛋白质-蛋白质相互作用PPI网络。在此过程中, 充分利用吸烟暴露体所涵盖的数据信息, 精准识别与之关联的RNA和miRNA, 为后续研究夯实基础。通过综合运用前沿的网络调控与追踪技术, 成功构建起以 latent TGF-β、Wnt、typeI (ACVR1) 、ADRB2、SMAD7和ROCK1为关键节点的COPD调控网络。随后, 采用高精准度的基因表达数据分析手段, 针对这六个与COPD紧密相关的基因展开敏感度评估, 并依据严格的标准将其敏感度从高到低进行排序, 结果表明latent TGF-β敏感度位居首位, 确认为敏感基因。最终, 凭借科学设定各个基因表达的阈值以及制定与之适配的干预方案, 切实达成对COPD病情的有效预警分析, 为该疾病的早期诊断提供关键指向标, 也为后续精准治疗筑牢坚实的科学依据根基, 有望推动COPD临床诊疗水平迈向新高度。 |
Abstract | Chronic obstructive pulmonary disease (COPD) is a widespread and profoundly impactful respiratory illness, posing a significant threat to public health. Unraveling its complex pathogenesis and the intricate regulatory networks it entails is essential. This comprehensive article sets forth to meticulously delineate the regulatory network of COPD, engaging in a thorough and rigorous examination of its multifaceted ties to various biological pathways. Anchored in a rich tapestry of clinical data and bolstered by a broad synthesis of leading-edge scientific literature, the study employs cutting-edge data mining techniques and sophisticated network regulatory models to construct a protein-protein interaction (PPI) network. In this process, fully utilizing the data information covered by smoking exposure, accurately identifying the associated RNA and miRNA, and laying a solid foundation for subsequent research. By integrating state-of-theart network regulation and tracking technologies, the researchers have meticulously crafted a COPD regulatory network with latent TGF-β, Wnt, typeI (ACVR1) , ADRB2, SMAD7, and ROCK1 as its linchpin nodes. Subsequently, high-precision gene expression data analysis was used to evaluate the sensitivity of these six genes closely related to COPD, and their sensitivity was ranked from high to low according to strict criteria. The results showed that late TGF-β had the highest sensitivity and was confirmed as a sensitive gene. In summation, by establishing scientifically sound gene expression thresholds and crafting intervention strategies that align with these benchmarks, the study achieves a formidable early warning analysis for COPD. This analysis is pivotal for the diseases early diagnosis, a critical juncture in enhancing patient prognoses. Furthermore, it lays a formidable scientific foundation for the development of precision treatments, which could herald a new era in the clinical management of COPD. It is anticipated that these insights will not only deepen our comprehension of COPD but also drive forward clinical practices, potentially elevating the standard of care for those afflicted with this debilitating disease to unprecedented heights. |
DOI | 10.48014/jcss.20241212002 |
文章类型 | 研究性论文 |
收稿日期 | 2024-12-12 |
接收日期 | 2025-01-12 |
出版日期 | 2025-03-28 |
关键词 | COPD, 敏感基因, 预警分析, 网络调控, 数据挖掘 |
Keywords | COPD, sensitive genes, early warning analysis, network regulation, data mining |
作者 | 陈秋宇1, 李欣蕾2, 王怀星1, 王浩华1,3,* |
Author | CHEN Qiuyu1, LI Xinlei2, WANG Huaixing1, WANG Haohua1,3,* |
所在单位 | 1. 海南大学数学与统计学院, 海口 570228 2. 海南大学国际旅游与公共管理学院, 海口 570228 3. 海南大学海南省工程建模与统计计算重点实验室, 海口 570228 |
Company | 1. School of Mathematics and Statistics, Hainan University, Haikou 570228, China 2. School of International Tourism and Public Management, Hainan University, Haikou 570228, China 3. Key Laboratory of Engineering Modeling and Statistical Computing of Hainan Province, Hainan University, Haikou 570228, China |
浏览量 | 58 |
下载量 | 23 |
基金项目 | 国家自然科学基金(12261028);海南省自然科学基金(122QN215);海南省工程建模与统计计算重点实验开放课题(HNGCTJ2401)。 |
参考文献 | [1] Ezzie ME, Crawford M, Cho JH, et al. Gene expression networks in COPD: microRNA and mRNA regulation [J]. Thorax, 2012, 67(2): 122-131. https://doi.org/10.1136/thoraxjnl-2011-200089. [2] Grosdidier S, Ferrer A, Faner R, et al. Network medicine analysis of COPD multimorbidities[J]. Respir Res, 2014, 15(1): 111. https://doi.org/10.1186/s12931-014-0111-4. [3] Drier Y, Sheffer M, Domany E. Pathway-based personalized analysis of cancer[J]. Proc NatlAcad Sci, 2013, 110(16): 6388-6393. https://doi.org/10.1073/pnas.1219651110. [4] Dm M, Thorn D, Swensen A, et al. Prevalence and outcomes of diabetes, hypertension and cardiovascular disease in COPD[J]. Eur Respir J, 2008, 32: 962-969. https://doi.org/10.1183/09031936.00012408. [5] Yoshida T, Tuder R M. Pathobiology of cigarette smokeinduced chronic obstructive pulmonary disease[J]. Physiol Rev, 2007, 87: 1047-1082. https://doi.org/10.1152/physrev.00048.2006. [6] Bauer-Mehren A, Furlong LI, Sanz F. Pathway databases and tools for their exploitation: benefits, current limitations and challenges[J]. Mol Syst Biol, 2009, 5: 290. https://doi.org/10.1038/msb.2009.47. [7] Croft D, OKelly G, Wu G, et al. Reactome: Reaction, pathways, and biological process databases[J]. Nucleic acid research, 2011, 39: D691-D697. https://doi.org/10.1093/nar/gkq1018. [8] Prior S J, Goldberg A P, Ryan A S. ADRB2 haplotype is associated with glucose tolerance and insulin sensitivity in obese postmenopausal women[J]. Obesity(Silver Spring), 2011, 19: 396-401. https://doi.org/10.1038/oby.2010.182. [9] Lacey R J, Cable H C, James RF, et al. Concentration-dependent effects of adrenaline on the profile of insulin secretion from isolated human islets of Langerhans[J]. J Endocrinol 1993, 138: 555-563. https://doi.org/10.1677/joe.0.1380555. [10] Hersh C P. Pharmacogenetics of chronic obstructive pulmonary disease: challenges and opportunities[J]. Pharmacogenomics, 2010, 11: 237-247. https://doi.org/10.2217/pgs.09.176. [11] Yu G, Reactome P A. Reactome Pathway Analysis R package version 2. 15. 2[Z]. 2012. https://doi.org/10.18129/B9.bioc.ReactomePA. [12] Thomsen M, Dahl M, Tybjaerg-Hansen A, et al. β2-adrenergic receptor Thr164IIe polymorphism, blood pressure and ischaemic heart. disease in 66 750 individuals [J]. J Intern Med, 2012, 271: 305-314. https://doi.org/10.1111/j.1365-2796.2011.02451.x. [13] Thomsen M, Nordestgaard B G, Sethi A A, et al. 2-adrenergic receptor polymorphisms, asthma and COPD: two large population-based studies[J]. EurRespir J, 2012, 39: 558-566. https://doi.org/10.1183/09031936.00163611. [14] Zandvoort A, Postma D S, Jonker M R, et al. Altered expression of the Smad signalling pathway: implications for COPD pathogenesis[J]. Eur Respir J, 2006; 28: 533e41. https://doi.org/10.1183/09031936.06.00104905. [15] Barnes P J. The cytokine network in chronic obstructive pulmonary disease[J]. Am J Respir Cell Mol Biol, 2009, 41: 631e8. https://doi.org/10.1165/rcmb.2009-0201TR. [16] Kneidinger N, Yildirim A O, Callegari J, et al. Activation of the WNT/beta-catenin pathway attenuates experimental emphysema[J]. Am J Respir Crit Care Med, 2011, 183: 723e33. https://doi.org/10.1164/rccm.201003-0424OC. |
引用本文 | 陈秋宇, 李欣蕾, 王怀星, 等. 基于网络调控视角下的慢性阻塞性肺疾病研究[J]. 中国统计科学学报, 2025, 3(1): 1-14. |
Citation | CHEN Qiuyu, LI Xinlei, WANG Huaixing, et al. Research on chronic obstructive pulmonary disease from the perspective of network regulation[J]. Journal of Chinese Statistical Sciences, 2025, 3(1): 1-14. |