2024年5月2日 星期四
农业生态系统减排增汇研究进展
Review on Greenhouse Gas Mitigation and Carbon Sink in Agroecosystem
摘要

在全球范围内, 人类面临着日益严峻的气候变化挑战, 绝大多数国家都在为解决这一问题而做出持续努力。农业生态系统既是重要的温室气体排放源, 同时又具有巨大的碳汇潜力, 所以农业生态系统减排增汇研究是应对气候变化挑战的重要举措。然而国内目前在碳汇方面的研究主要集中在森林、草原和海洋领域, 有关农业生态系统碳汇的研究相对较少。对于减少温室气体排放的研究也主要集中在工业、能源、建筑等领域, 农业领域缺乏重视。因此, 农业生态系统减排增汇研究亟待开展。本文系统梳理了在农业生态系统中减少温室气体排放以及增加碳汇的研究进展, 重点探讨了农业废弃物处理、肥料管理和土壤改良等一系列农业管理措施在农业生态系统减排增汇中的作用, 对农业生态系统减排增汇措施及未来研究方向提出了相关建议和展望, 以期为生态农业实践提供有益参考, 实现农业的绿色可持续发展。

Abstract

Globally, mankind is facing an increasingly severe challenge of climate change, and the vast majority of countries are making sustained efforts to solve the problem. Agroecosystem is not only an important source of greenhouse gas emissions, but also has a large potential of carbon sink, so research on greenhouse gas mitigation and carbon sink in agroecosystems is an important initiative to address the challenge of climate change. However, the current domestic research on carbon sinks mainly focuses on forests, grasslands and oceans, and there are relatively few studies on carbon sinks in agroecosystems. Studies on greenhouse gas emission reduction is also mainly concentrated in the fields of industry, energy and lacks the attention in the field of agriculture. Therefore, the research on greenhouse gas mitigation and carbon sink in agroecosystems needs to be carried out urgently. This paper systematically reviewed the research progress to reduce greenhouse gas emissions and increase carbon sinks in agroecosystem, and focused on the role of a series of agricultural management measures, such as agricultural waste disposal, fertilizer management and soil improvement in reducing emissions and increasing sinks in agroecosystem, and put forward relevant suggestions and prospects for the measures to reduce emissions and increase sinks in agroecosystem and the future research direction, with a view to providing useful reference for agricultural practice and realize green and sustainable agricultural production.  

DOI10.48014/pceep.20230914001
文章类型综 述
收稿日期2023-09-14
接收日期2023-09-20
出版日期2023-09-28
关键词农业生态系统, 温室气体减排, 碳汇, 生态系统增汇, 农业管理措施
KeywordsAgroecosystem, greenhouse gas mitigation, carbon sink, ecosystem sink enhancement, agricultural management measures
作者王家辰1、2、3, 刘子嫣3、4, 尹哲玉3、5, 白志辉3、5, 庄绪亮3、5
AuthorWANG Jiachen1、2、3, LIU Ziyan3、4, YIN Zheyu3、5, BAI Zhihui3、5, ZHUANG Xuliang3、5
所在单位1. 滨州魏桥国科高等技术研究院, 滨州 256606;
2. 郑州大学河南先进技术研究院, 郑州 450001;
3. 中国科学院生态环境研究中心, 北京 100085;
4. 中国科学院大学中丹学院, 北京 100049;
5. 中国科学院大学资源与环境学院, 北京 101314。
Company1. Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou 256606, China
2. Zhengzhou University, Henan Institute of Advanced Technology, Zhengzhou 450001, China
3. Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing 100085, China
4. Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
5. College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 101314, China.
浏览量350
下载量124
基金项目魏桥国科低碳技术专项(GYY-DTFZ-2022-004);
中国科学院战略性先导科技专项(XDA2301040103);
国家自然科 学基金项目(42177111)。
参考文献[1] 程秀娟. 农业温室气体排放与减排固碳措施分析[J]. 中南农业科技, 2022, 43(05): 84-90.
[2] 杨红柳, 王美妮. 生态文明史观视域下中国“双碳”战略的治理现代化意义[J]. 辽宁师范大学学报(社会科学版), 2023, 46(02): 39-43.
http://doi.org/10.16216/j.cnki.lsxbwk.202302039
[3] GOPI C, BIKRAM B, DIPESH J, et al. Greenhouse gases emission from agricultural soil: A review[J]. Journal of Agriculture and Food Research, 2023, 11.
http://doi.org/10.1016/j.jafr.2023.100533
[4] HU Y, SU M, JIAO L. Peak and fall of China􀆳s agricultural GHG emissions[J]. Journal of Cleaner Production, 2023, 389: 136035.
http://doi.org/10.1016/j.jclepro.2023.136035
[5] 范紫月, 齐晓波, 曾麟岚, 等. 中国农业系统近40年温室气体排放核算[J]. 生态学报, 2022, 42(23): 9470-9482.
http://doi.org/10.5846/stxb202201290273
[6] ZHANG H, YE X, CHENG T, et al. A laboratory study of agricultural crop residue combustion in China: Emission factors and emission inventory[J]. Atmospheric Environment, 2008, 42(36): 8432-8441.
http://doi.org/10.1016/j.atmosenv.2008.08.015
[7] 张晓萱, 秦耀辰, 吴乐英, 等. 农业温室气体排放研究进展[J]. 河南大学学报(自然科学版), 2019, 49(06): 649- 662+713.
http://doi.org/10.15991/j.cnki.411100.2019.06.003
[8] SUN B, XU X. Spatial-temporal evolution of the relationship between agricultural material inputs and agricultural greenhouse gas emissions: experience from China 2003-2018[J]. Environmental science and pollution research, 2022, 29: 46600-46611.
http://doi.org/10.1007/s11356-022-19195-x
[9] 张帆, 宣鑫, 金贵, 等. 农业源非二氧化碳温室气体排放及情景模拟[J]. 地理学报, 2023, 78(01): 35-53.
http://doi.org/10.11821/dlxb202301003
[10] CHEN M, CUI Y, JIANG S, et al. Toward carbon neutrality before 2060: Trajectory and technical mitigation potential of non-CO2 greenhouse gas emissions from Chinese agriculture[J]. Journal of Cleaner Production, 2022, 368: 133186.
http://doi.org/10.1016/j.jclepro.2022.133186
[11] WANG G, LIU P, HU J, ZHANG F. Spatiotemporal Patterns and Influencing Factors of Agriculture Methane Emissions in China[J]. Agriculture, 2022, 12(10): 1573.
http://doi.org/10.3390/agriculture12101573
[12] LI Z, FU W, LUO M, et al. Calculation and scenario prediction of methane emissions from agricultural activities in China under the background of “carbon peak”[J]. IOP Conference Series: Earth and Environmental Science, 2022, 1087(1): 11.
http://doi.org/10.1088/1755-1315/1087/1/012021
[13] 严圣吉, 尚子吟, 邓艾兴, 等. 我国农田氧化亚氮排放的时空特征及减排途径[J]. 作物杂志, 2022,(03): 1-8.
http://doi.org/10.16035/j.issn.1001-7283.2022.03.001
[14] 邢力. 华北农田玉米根区N2O 排放特征及其驱动机制[D]. 石家庄: 河北农业大学, 2022.
http://doi.org/10.27109/d.cnki.ghbnu.2022.000022
[15] 孙立博. 中国北方农田土壤微生物驱动N2O生成机制[D]. 长春: 吉林建筑大学, 2022.
http://doi.org/10.27714/d.cnki.gjljs.2022.000208
[16] 黄晓雯. 乡村振兴视角下农业碳汇发展分析[J]. 农业开发与装备, 2022(11): 10-12.
http://doi.org/10.3969/j.issn.1673-9205.2022.11.004
[17] 苑明睿, 杨峰山, 蔡柏岩, 等. 农业土壤碳汇研究进展[J]. 中国农学通报, 2023, 39(08): 37-42.
[18] SMITH P, MARTINO D, CAI Z, et al. Greenhouse gas mitigation in agriculture[J]. Philosophical Transactions of The Royal Society B, 2007, 363(1492): 789-813.
http://doi.org/10.1098/rstb.2007.2184
[19] 佘玮, 黄璜, 官春云, 等. 我国典型农作区作物生产碳汇功能研究[J]. 中国工程科学, 2016, 18(01): 106-113.
http://doi.org/10.15302/J-CESS-2016013
[20] SHE W, WU Y, HUANG H, et al. Integrative analysis of carbon structure and carbon sink function for major crop production in China’s typical agriculture regions[J]. Journal of Cleaner Production, 2017, 162: 7.
http://doi.org/10.1016/j.jclepro.2017.05.108
[21] 石祖梁, 贾涛, 王亚静等. 我国农作物秸秆综合利用现状及焚烧碳排放估算[J]. 中国农业资源与区划, 2017, 38(09): 32-37.
http://doi.org/10.7621/cjarrp.1005-9121.20170905
[22] TOAN N, HANH D, PHUONG N, et al. Effects of burning rice straw residue on-field on soil organic carbon pools: Environment-friendly approach from a conventional rice paddy in central Viet Nam[J]. Chemosphere, 2022, 294: 1.
http://doi.org/10.1016/j.chemosphere.2022.133596
[23] 方放, 李想, 石祖梁等. 黄淮海地区农作物秸秆资源分布及利用结构分析[J]. 农业工程学报, 2015, 31(02): 228-234.
http://doi.org/10.3969/j.issn.1002-6819.2015.02.032
[24] LIU Y, ZHANG J, ZHUANG M. Bottom-up re-estimations of greenhouse gas and atmospheric pollutants derived from straw burning of three cereal crops production in China based on a national questionnaire[J]. Environmental Science and Pollution Research, 2021, 28(46): 65410-65415.
http://doi.org/10.1007/s11356-021-15658-9
[25] 周子清, 牛秀莲, 张艳国. 推进农作物秸秆综合利用的思路及对策[J]. 新农业, 2023,(04): 9.
[26] 庞力豪, 王丽霞, 姜凯阳, 等. 山东省主要农作物秸秆肥料化及沼气化利用分析[J]. 东北农业科学, 2021, 46(03): 48-53.
http://doi.org/10.16423/j.cnki.1003-8701.2021.03.011
[27] HAO X, HAN X, WANG S, et al. Dynamics and composition of soil organic carbon in response to 15 years of straw return in a Mollisol[J]. Soil & Tillage Research, 2022, 215: 105221.
http://doi.org/10.1016/j.still.2021.105221
[28] KOZJEK K, MANOHARAN L, URICH T, et al. Microbial gene activity in straw residue amendments reveals carbon sequestration mechanisms in agricultural soils[J]. Soil Biology and Biochemistry, 2023, 179: 108994.
http://doi.org/10.1016/j.soilbio.2023.108994
[29] Li Y, Zhang W, Li J, Zhou F, et al. Complementation between microbial necromass and plant debris governs the long-term build-up of the soil organic carbon pool in conservation agriculture[J]. Soil Biology and Biochemistry, 2023, 178: 108963.
http://doi.org/10.1016/j.soilbio.2023.108963
[30] Wang S, Lu C, Huai S, Yan Z, Wang J, et al. Straw burial depth and manure application affect the straw-C and N sequestration: Evidence from 13C &15N-tracing[J]. Soil & Tillage Research, 2021, 208: 104884.
http://doi.org/10.1016/j.still.2020.104884
[31] WANG L, WANG T, XING Z, et al. Enhanced lignocellulose degradation and composts fertility of cattle manure and wheat straw composting by Bacillus inoculation[J]. Journal of Environmental Chemical Engineering, 2023, 11(3): 109940.
http://doi.org/10.1016/j.jece.2023.109940
[32] HU Q, LI C, CAO C, HUANG J, et al. The rice-edible mushroom pattern promotes the transformation of composted straw-C to soil organic carbon[J]. Agriculture, Ecosystems and Environment, 2023, 353: 108560.
http://doi.org/10.1016/j.agee.2023.108560
[33] ZHU K, YE X, RAN H, et al. Contrasting effects of straw and biochar on microscale heterogeneity of soil O2 and pH: Implication for N2O emissions[J]. Soil Biology & Biochemistry, 2022, 166: 108564.
http://doi.org/10.1016/j.soilbio.2022.108564
[34] ZHANG C, LIU L, ZHAO M, et al. The environmental characteristics and applications of biochar[J]. Environmental Science and Pollution Research, 2018, 25(22): 21525-21534.
http://doi.org/10.1007/s11356-018-2521-1
[35] CHAGAS J, FIGUEIREDO C, RAMOS M. Biochar increases soil carbon pools: Evidence from a global metaanalysis[J]. Journal of Environmental Management, 2022, 305: 114403.
http://doi.org/10.1016/j.jenvman.2021.114403
[36] 李文杰, 左翔之, 王建, 等. 生物炭施用土壤的固碳减排效应及机制[J]. 中国环境科学, 2023, 43(5): 1-12.
http://doi.org/10.19674/j.cnki.issn1000-6923.20230529.017
[37] 吴淑勋, 马文林, 孙天晴, 等. 秸秆饲料化技术减排评价指标体系研究———基于层次分析法[J]. 黑龙江畜牧兽医, 2020(04): 1-6.
http://doi.org/10.13881/j.cnki.hljxmsy.2019.06.0024
[38] 陆刚. 农作物秸秆饲料化的利用技术[J]. 浙江畜牧兽医, 2022, 47(05): 26-27+31.
[39] 王喜凤, 李海峰, 屈建航. 瘤胃中产琥珀酸丝状杆菌的纤维素降解机制及其在秸秆饲料化中的应用[J]. 饲料研究, 2023, 46(05): 126-130.
http://doi.org/10.13557/j.cnki.issn1002-2813.2023.05.026.
[40] 郭丽丽. 农作物秸秆“五化”利用及展望[J]. 河南农业, 2023(14): 62-64.
http://doi.org/10.15904/j.cnki.hnny.2023.14.022
[41] 苑鹤, 李威, 蔡丹, 等. 秸秆原料化利用技术简介[J]. 河北农业, 2018(08): 33-34.
[42] 霍丽丽, 姚宗路, 赵立欣, 等. 秸秆综合利用减排固碳贡献与潜力研究[J]. 农业机械学报, 2022, 53(01): 349-359.
http://doi.org/10.6041/j.issn.1000-1298.2022.01.038
[43] 朱颢, 胡启春, 汤晓玉, 等. 我国农作物秸秆资源燃料化利用开发进展[J]. 中国沼气, 2017, 35(02): 115-120.
http://doi.org/10.3969/j.issn.1000-1166.2017.02.021
[44] WANG Z, WANG Z, XU G, et al. Sustainability assessment of straw direct combustion power generation in China: From the environmental and economic perspectives of straw substitute to coal[J]. Journal of Cleaner Production, 2020, 273: 122890.
http://doi.org/10.1016/j.jclepro.2020.122890
[45] 唐宏伟. 农作物秸秆燃料化利用价值分析[J]. 农机科技推广, 2017,(12): 52-53.
[46] 石祖梁, 王飞, 李想, 等. 秸秆“五料化”中基料化的概念和定义探讨[J]. 中国土壤与肥料, 2016(06): 152-155.
http://doi.org/10.11838/sfsc.20160625
[47] WANG Z, CHEN J, MAO S, et al. Comparison of greenhouse gas emissions of chemical fertilizer types in China􀆳s crop production[J]. Journal of Cleaner Production, 2017, 141: 1267-1274.
http://doi.org/10.1016/j.jclepro.2016.09.120
[48] ARYAL, BABITA, GURUNG, ROSHNI, CAMARGO, ALINE F, et al. Nitrous oxide emission in altered nitrogen cycle and implications for climate change[J]. Environmental pollution(Barking, Essex: 1987), 2022, 314: 120272.
http://doi.org/10.1016/j.envpol.2022.120272
[49] GAO D, SHENG R, et al. Effect of phosphorus amendments on rice rhizospheric methanogens and methanotrophs in a phosphorus deficient soil[J]. Geoderma, 2020, 368(C): 114312.
http://doi.org/10.1016/j.geoderma.2020.114312
[50] LIU H, LI J, LI X, et al. Mitigating greenhouse gas emissions through replacement of chemical fertilizer with organic manure in a temperate farmland[J]. Science Bulletin, 2015, 60(6): 598-606.
http://doi.org/10.1007/s11434-014-0679-6
[51] 邹原东, 范继红. 有机肥施用对土壤肥力影响的研究进展[J]. 中国农学通报, 2013, 29(03): 12-16.
http://doi.org/10.3969/j.issn.1000-6850.2013.03.003
[52] XIA L, LAM S, YAN X, et al. How Does Recycling of Livestock Manure in Agroecosystems Affect Crop Productivity, Reactive Nitrogen Losses, and Soil Carbon Balance?[J]. Environmental science & technology, 2017, 51(13): 7450-7457.
http://doi.org/10.1021/acs.est.6b06470
[53] 徐明岗. 化肥有机替代找回另一半农业[J]. 中国农村科技, 2016(02): 37-39.
http://doi.org/10.3969/j.issn.1005-9768.2016.02.010
[54] GRAHAM R, WORTMAN S, PITTELKOW C, et al. Comparison of Organic and Integrated Nutrient Management Strategies for Reducing Soil N2O Emissions[J]. Sustainability, 2017, 9(4): 510.
http://doi.org/10.3390/su9040510
[55] 谭月臣. 氮肥、耕作和秸秆还田对作物生产和温室气体 排放的影响[D]. 北京: 中国农业大学, 2018.
[56] XU W, ZHAO D, MA Y, et al. Effects of long-term organic fertilizer substitutions on soil nitrous oxide emissions and nitrogen cycling gene abundance in a greenhouse vegetable field[J]. Applied Soil Ecology, 2023, 188: 104877.
http://doi.org/10.1016/j.apsoil.2023.104877
[57] NY-884-2012, 生物有机肥[S]. 北京: 中华人民共和国农业部, 2012-06-06.
[58] 可艳军, 张雨萌, 郭艳杰, 等. 生物有机肥配合深松对农田土壤肥力和作物产量的影响[J]. 中国农业科技导报, 2023, 25(04): 157-166.
http://doi.org/10.13304/j.nykjdb.2022.0203
[59] LI H, ZHOU Y, MEI H, et al. Effects of Long-Term Application of Earthworm Bio-Organic Fertilization Technology on Soil Quality and Organo-Mineral Complex in Tea Garden[J]. Forests, 2023, 14(2): 225.
http://doi.org/10.3390/f14020225.
[60] 马莹, 曹梦圆, 石孝均等. 植物促生菌的功能及在可持续农业中的应用[J]. 土壤学报, 2022, 76(11): 1-15.
http://doi.org/10.11766/trxb202203160112
[61] DONG, CAO Y. Research progress on the immune regulation of symbiotic nitrogen fixation between legumes and rhizobia[J]. Biotechnology Bulletin, 2019, 35(10): 25-33.
http://doi.org/10.13560/j.cnki.biotech.bull.1985.2019-0716
[62] ZHANG, SUN J, XU J, et al. Isolation and identification and evaluation of nitrogen-fixing bacillus strain GD272[J]. Plant Nutrition and Fertitizer Science, 2009, 15(5): 1196-1201.
http://doi.org/10.3321/j.issn:1008-505X.2009.05.030
[63] 常珺枫, 刘莹, 李陈, 等. 农田氮磷流失特征及影响因素研究[J]. 中国农学通报, 2023, 39(15): 69-75.
[64] CHEN W, ZHOU H, WU Y, et al. Direct and indirect influences of long-term fertilization on microbial carbon and nitrogen cycles in an alpine grassland[J]. Soil Biology and Biochemistry, 2020, 149: 107922.
http://doi.org/10.1016/j.soilbio.2020.107922
[65] DEVI R, KAUR T, KOUR D, et al. Minerals solubilizing and mobilizing microbiomes: A sustainable approaches for managing minerals deficiency in agricultural soil[J]. Journal of applied microbiology, 2022, 133(3): 1245-1272.
http://doi.org/10.1111/jam.15627
[66] LI Z, TIAN D, WANG B, et al. Microbes drive global soil nitrogen mineralization and availability[J]. Global change biology, 2018, 25(3): 1078-1088.
http://doi.org/10.1111/gcb.14557
[67] SUN B, GU L, BAO L, et al. Application of biofertilizer containing Bacillus subtilis reduced the nitrogen loss in agricultural soil[J]. Soil Biology and Biochemistry, 2020, 148: 107911.
http://doi.org/10.1016/j.soilbio.2020.107911
[68] WU S, ZHUANG G, BAI Z, et al. Mitigation of nitrous oxide emissions from acidic soils by Bacillus amyloliquefaciens, a plant growth-promoting bacterium[J]. Global change biology, 2018, 24(6): 2352-2365.
http://doi.org/10.1111/gcb.14025
[69] GENG Y, WANG J, SUN Z, et al. Soil N-oxide emissions decrease from intensive greenhouse vegetable fields by substituting synthetic N fertilizer with organic and bio-organic fertilizers[J]. Geoderma, 2021, 383: 114730.
http://doi.org/10.1016/j.geoderma.2020.114730
[70] PRATIBHA R, SUDESHNA D, DEEPTI S, et al. Phosphate- Solubilizing Microorganisms: Mechanism and Their Role in Phosphate Solubilization and Uptake[J]. Journal of Soil Science and Plant Nutrition, 2020, 21(1).
http://doi.org/10.1007/s42729-020-00342-7
[71] RODRIGUEZ H, FRAGA R. Phosphate solubilizing bacteria and their role in plant growth promotion[J]. Biotechnology Advances, 1999, 17(4): 319-339.
http://doi.org/10.1016/S0734-9750(99)00014-2
[72] LI Z, XIA S, ZHANG R, et al. N2O emissions and product ratios of nitrification and denitrification are altered by K fertilizer in acidic agricultural soils[J]. Environmental Pollution, 2020, 265(Pt B): 115065.
http://doi.org/10.1016/j.envpol.2020.115065
[73] SOUMARE A, SARR D, DIEDHIOU G. Potassium sources, microorganisms and plant nutrition: Challenges and future research directions[J]. Pedosphere, 2023, 33(1): 105-115.
http://doi.org/10.1016/j.pedsph.2022.06.025
[74] MEENA V, MAURYA B, VERMA J. Does a rhizospheric microorganism enhance K+ availability in agricultural soils?[J]. Microbiological Research, 2014, 169(5-6): 337-347.
http://doi.org/10.1016/j.micres.2013.09.003
[75] JONIEC J, BEDNARZ J, et al. Microbiological Nitrogen Transformations in Soil Treated with Pesticides and Their Impact on Soil Greenhouse Gas Emissions[J]. Agriculture, 2021, 11(8): 787.
http://doi.org/10.3390/agriculture11080787
[76] DENG X, ZHANG N, LI Y, ZHU C, et al. Bio-organic soil amendment promotes the suppression of Ralstonia solanacearum by inducing changes in the functionality and composition of rhizosphere bacterial communities[J]. The New phytologist, 2022, 235(4): 1558-1574.
http://doi.org/10.1111/nph.18221
[77] LAL, RATTAN, MONGER, CURTIS, NAVE, LUKE, et al. The role of soil in regulation of climate[J]. PhilosophicalTransactions of the Royal Society B, 2021, 376(1834): 1-13.
http://doi.org/10.1098/rstb.2021.0084
[78] 欧阳学军, 周国逸, 黄忠良, 等. 土壤酸化对温室气体排放影响的培育实验研究[J]. 中国环境科学, 2005(04): 465-470.
http://doi.org/10.3321/j.issn:1000-6923.2005.04.019
[79] 徐仁扣, 李九玉, 周世伟, 等. 我国农田土壤酸化调控的科学问题与技术措施[J]. 中国科学院院刊, 2018, 33(02): 160-167.
http://doi.org/10.16418/j.issn.1000-3045.2018.02.005
[80] YANG J, YAO R. Management and Efficient AgriculturalUtilization of Salt-affected Soil in China[J]. 2015, 30(Z1): 162-170.
http://doi.org/10.16418/j.issn.1000-3045.2015.Z1.018
[81] 于宝勒. 盐碱地修复利用措施研究进展[J]. 中国农学通报, 2021, 37(07): 81-87.
[82] 曹伟, 魏光辉, 谷新保, 等. 农田明渠排水条件下土壤水盐运移规律研究[J]. 水土保持研究, 2009, 16(02): 234-238.
[83] 张彬, 杨宁, 王迪, 等. 国内外盐碱地改良技术比较及对吉林省的启示[J]. 现代营销(上旬刊), 2023(03): 113-115.
http://doi.org/10.19921/j.cnki.1009-2994.2023-03-0113-038
[84] 杨劲松, 姚荣江, 王相平, 等. 中国盐渍土研究: 历程、现状与展望[J]. 土壤学报, 2022, 59(01): 10-27.
http://doi.org/10.11766/trxb202110270578
[85] 胡琴. 灌溉水量对滨海盐碱地有机碳及水盐运移影响研究[D]. 泰安: 山东农业大学, 2019.
http://doi.org/10.7666/d.D01698646
[86] Gougoulias C, Joanna M, Liz J. The role of soil microbesin the global carbon cycle: tracking the belowgroundmicrobial processing of plant-derived carbon formanipulating carbon dynamics in agricultural systems[J]. Journal of the science of food and agriculture, 2014, 94(12): 2362-2371.
http://doi.org/10.1002/jsfa.6577
[87] 冷寒冰, 马利静, 秦俊. 滨海盐碱地改良对绿地碳汇效益影响的研究[J]. 长江流域资源与环境, 2012, 21(S2): 96-101.
[88] 魏坤峰. 盐碱地微区改土植树技术[J]. 盐碱地利用, 1991(02): 17-19.
[89] 王仰仁, 周青云, 孙书洪, 等. 滨海盐碱地微区改土系统刍议[J]. 天津农学院学报, 2011, 18(04): 45-48.
http://doi.org/10.3969/j.issn.1008-5394.2011.04.014
[90] 赵英, 王丽, 赵惠丽, 等. 滨海盐碱地改良研究现状及展望[J]. 中国农学通报, 2022, 38(03): 67-74.
[91] 王丽. 秸秆配施脱硫石膏对滨海盐碱土碳固持的影响[D]. 烟台: 鲁东大学, 2022.
http://doi.org/10.27216/d.cnki.gysfc.2022.000671
[92] 李兵, 刘广明, 苏里坦, 等. 基于磁感式大地电导率仪的土壤盐分解译模型[J]. 土壤, 2017, 49(04): 789-794.
http://doi.org/10.13758/j.cnki.tr.2017.04.022
[93] YU G, YANG Z, YAN L, et al. Effect of different biocharparticle sizes together with bio-organic fertilizer onrhizosphere soil microecological environment on salinealkaliland[J]. Frontiers in Environmental Science, 2022, 10: 1-14.
http://doi.org/10.3389/fenvs.2022.949190
[94] ZHANG P, YANG F, ZHANG H, et al. BeneficialEffects of Biochar-Based Organic Fertilizer on NitrogenAssimilation, Antioxidant Capacities, and Photosynthesisof Sugar Beet(Beta vulgaris L. )under Saline-Alkaline Stress[J]. Agronomy, 2020, 10(10): 1562.
http://doi.org/10.3390/agronomy10101562
[95] YANG S, HAO X, XU Y, et al. Meta-Analysis of theEffect of Saline-Alkali Land Improvement and Utilizationon Soil Organic Carbon[J]. Life(Basel, Switzerland), 2022, 12(11): 1870.
http://doi.org/10.3390/life12111870
[96] 赵振勇, 田长彦, 张科, 等. 盐碱地生物改良与盐生植物资源综合利用[J]. 高科技与产业化, 2020(09): 64-66.
[97] 程珊珊, 李瑞利, 石福臣. 应用耐盐植物改良滨海盐渍土的研究[C]. //2015年中国环境科学学会年会论文集. 2015: 4418-4424.
[98] 黄晶, 孔亚丽, 徐青山, 等. 盐渍土壤特征及改良措施研究进展[J]. 土壤, 2022, 54(01): 18-23.
http://doi.org/10.13758/j.cnki.tr.2022.01.003.
[99] 韩敏, 红梅, 刘鹏飞, 等. 不同改良措施对土默川平原碱化土壤理化性质的影响[J]. 北方农业学报, 2018, 46(02): 76-81.
http://doi.org/10.3969/j.issn.2096-1197.2018.02.16
[100] WU X, XIE Y, QIAO J, et al. Rhizobacteria Strain from aHypersaline Environment Promotes Plant Growth ofKengyilia thoroldiana[J]. Microbiology, 2019, 88(2): 220-231.
http://doi.org/10.1134/S0026261719020127
[101] YANG W, JIAO Y, YANG M, WEN H, et al. Methaneuptake by saline-alkaline soils with varying electricalconductivity in the Hetao Irrigation District ofInner Mongolia, China[J]. Nutrient Cycling in Agroecosystems, 2018, 112(2): 265-276.
http://doi.org/10.1007/s10705-018-9943-5
[102] 梁超, 朱雪峰. 土壤微生物碳泵储碳机制概论[J]. 中国科学: 地球科学, 2021, 51(05): 680-695.
http://doi.org/10.1007/s11430-020-9705-9
[103] YUE K, WU Q, PENG Y, et al. No tillage decreasesGHG emissions with no crop yield tradeoff at the globalscale[J]. Soil & Tillage Research, 2023, 228: 105643.
http://doi.org/10.1016/j.still.2023.105643
[104] LI Z, ZHANG Q, LI Z, QIAO Y, et al. Effects of notillageon greenhouse gas emissions in maize fields in asemi-humid temperate climate region[J]. EnvironmentalPollution, 2022, 309: 119747.
http://doi.org/10.1016/j.envpol.2022.119747
[105] BANSAL S, YIN X, SCHNEIDER L, et al. . Carbonfootprint and net carbon gain of major long-termcropping systems under no-tillage[J]. Journal of EnvironmentalManagement, 2022, 307: 114505.
http://doi.org/10.1016/j.jenvman.2022.114505
[106] JOHAN S, et al. The potential to mitigate global warmingwith no-tillage management is only realizedwhen practised in the long term[J]. Global Change Biology, 2004, 10(2): 155-160.
http://doi.org/10.1111/j.1529-8817.2003.00730.x
[107] STEPHEN M, ALSAKER C, et al. Climate and SoilCharacteristics Determine Where No-Till ManagementCan Store Carbon in Soils and Mitigate Greenhouse GasEmissions[J]. Scientific reports, 2019, 9(1): 1-8.
http://doi.org/10.1038/s41598-019-47861-7
[108] ZHANG L, XU X. Difference in carbon footprint betweensingle-and double-cropping rice production inChina, 2003-2016[J]. Environmental science and pollutionresearch international, 2021, 28(21): 1-10.
http://doi.org/10.1007/s11356-021-12543-3
[109] NITTAYA C, AMNAT C. , KAZUYUKI Y, et al. Greenhouse gas emissions, soil carbon sequestrationand crop yields in a rain-fed rice field with crop rotationmanagement[J]. Agriculture, Ecosystems andEnvironment, 2017, 237: 109-120.
http://doi.org/10.1016/j.agee.2016.12.025
[110] GAN Y, LIANG C, et al. Improving farming practicesreduces the carbon footprint of spring wheat production[J]. Nature communications, 2014, 5(1): 1.
http://doi.org/10.1038/ncomms6012
[111] WANG X, CHEN Y, YANG K, et al. Effects of legumeintercropping and nitrogen input on net greenhouse gasbalances, intensity, carbon footprint and crop productivityin sweet maize cropland in South China[J]. Journal ofCleaner Production, 2021, 314: 127997.
http://doi.org/10.1016/j.jclepro.2021.127997
[112] OERTEL C, MATSCHULLAT J, ZURBA K, et al. Greenhouse gas emissions from soils—A review[J]. Chemie der Erde-Geochemistry-Interdisciplinary Journalfor Chemical Problems of the Geosciences andGeoecology, 2016, 76(3): 327-352.
http://doi.org/10.1016/j.chemer.2016.04.002
[113] WANG H, ZHAO R, ZHAO D, et al. Microbial-MediatedEmissions of Greenhouse Gas from FarmlandSoils: A Review[J]. Processes, 2022, 10(11): 2361.
http://doi.org/10.3390/pr10112361
[114] ZOU X, LI Y E, GAO Q, et al. How water saving irrigationcontributes to climate change resilience—a case studyof practices in China[J]. Mitigation and Adaptation Strategiesfor Global Change, 2012, 17(2): 111-132.
http://doi.org/10.1007/s11027-011-9316-8
[115] TROST B, PROCHNOW A, DRASTIG K, et al. Irrigation, soil organic carbon and N2O emissions. A review[J]. Agronomy for Sustainable Development, 2013, 33(4): 733-749.
http://doi.org/10.1007/s13593-013-0134-0
[116] HAN L, ZHANG Y, JIN S, et al. Effect of DifferentIrrigation Methods on Dissolved Organic Carbon andMicrobial Biomass Carbon in the Greenhouse Soil[J]. Agricultural Sciences in China, 2010, 9(8): 1175-1182.
http://doi.org/10.1016/S1671-2927(09)60205-4
引用本文王家辰, 刘子嫣, 尹哲玉, 等. 农业生态系统减排增汇研究进展[J]. 中国生态环境保护进展, 2023, 1(3): 22-35.
CitationWANG Jiachen, LIU Ziyan, YIN Zheyu, et al. Review on greenhouse gas mitigation and carbon sink in Agroecosystem[J]. Progress in Chinese Eco-Environmental Protection, 2023, 1(3): 22-35.