2024年6月20日 星期四
纳米工程化混凝土研究新进展
Latest Research Progress on Nano-Engineered Concrete
摘要

混凝土是人类文明在地球上有形足迹的最明显表现之一, 其应用量大面广, 已成为世界上用量最大的人造工程材料。相对于其他工程材料, 混凝土的生产资源和能源消耗少、有害副产品少、环境损害小; 同时因其优异的抗压和耐疲劳等力学性能以及耐水和抗火性, 应用混凝土建造的基础设施具有高安全和耐久性以及维护少等优点, 因此混凝土是人类建造工程领域可持续发展的可靠选择且未来仍不可或缺的建筑材料。但混凝土固有缺点和现有性能不能很好满足人类未来生存空间的建造和拓展的要求, 而且大量混凝土的生产和使用对资源、能源和环境影响巨大。纳米科学与技术可从最基础层面理解和调控混凝土, 从而实现混凝土的 (超) 高性能化以及多功能/智能化, 进而为解决上述挑战并实现可持续发展注入动力。本文聚焦纳米工程化混凝土的增强/改性机理、制备与性能调控、性能和功能表征与工程应用三方面相关核心研究进展, 主要介绍包括纳米中心效应 (Nano-core effect) 、纳米中心效应区、纳米中心效应改善界面的迁移富集效应、纳米中心效应诱导的超硬水化硅酸钙凝胶相、纳米级孔结构特征等科学现象解释/原理探究, 纳米工程化混凝土的性能调控与大规模制备的先进技术探索 (如表面处理、自组装、原位生长等) , 以及纳米工程化混凝土性能拓展和土木、交通、市政、海洋、能源、军事等领域工程应用验证等方面获得的认识。

Abstract

As one of the most obvious manifestations of tangible footprint of human civilization on Earth, concrete is largely and widely applied, and has become the largest amount of man-made engineering material in the world. Compared with other engineering materials, concrete consumes less production resource and energy, has fewer harmful by-products, and causes less environmental impact. Additionally, due to its excellent mechanical properties, such as compressive strength and fatigue resistance, along with its water and fire resistance, the infrastructure constructed by applying concrete has the advantages of high safety, durability, and low maintenance. Consequently, concrete remains a reliable choice for sustainable development of the field of human construction and engineering and remains indispensable in the future. However, inherent shortcomings and current performance limitations of concrete do not meet the requirements for the construction and expansion of human living spaces in the future. Moreover, the production and use of large quantities of concrete have a significant impact on resources, energy, and environment. Nanoscience and nanotechnology can be used to understand and control concrete at its fundamental level, enabling the realization of (ultra) high-performance and multifunctional/smart concrete, which in turn can give impetus to addressing the aforementioned challenges and achieving sustainable development. This article focuses on three core research advancements related to enhancement/modification mechanisms, preparation and performance control, and performance and functionality characterization for engineering applications of nanoengineered concrete. It mainly introduces the explanation/principle investigation of scientific phenomena including nano-core effect, nano-core effect zone, nano-core effect-induced enrichment effect for interface enhancement, nano-core effect-induced ultrahigh-density calcium silicate gel, and nanoscale pore structure characteristics, the exploration of advanced technologies for performance modulation and large-scale preparation of nano-engineered concrete (e. g. , surface treatment, self-assembly, and in-situ growth techniques, etc. ) , as well as the understanding gained from the expansion of the properties of nanoengineered concrete and the validation of engineering applications in the fields of civil engineering, transportation, municipal, marine, energy, and military.  

DOI10.48014/emc.20230807001
文章类型综 述
收稿日期2023-08-07
接收日期2023-08-15
出版日期2023-12-28
关键词混凝土, 纳米, 工程化, 机理, 调控, 工程应用
KeywordsConcrete, nano, engineered, mechanism, modulation, engineering applications
作者丁思齐1, 王欣悦2, 王佳亮3, 李祯4, 张立卿5, 韩宝国2,*
AuthorDING Siqi1, WANG Xinyue2, WANG Jialiang3, LI Zhen4, ZHANG Liqing5, HAN Baoguo2,*
所在单位1. 香港理工大学土木及环境工程学系, 香港 999077
2. 大连理工大学土木工程学院, 大连 116024
3. 奥胡斯大学土木与建筑工程系, 奥胡斯 8210
4. 哈尔滨工程大学航天与建筑工程学院, 哈尔滨 150001
5. 华东交通大学土木建筑学院, 南昌 330013
Company1. Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
2. School of Civil Engineering, Dalian University of Technology, Dalian 116024, China
3. Department of Civil and Architectural Engineering, Aarhus University, Aarhus 8210, Denmark
4. College of Aerospace and Civil Engineering, Harbin Engineering University, Harbin 150001, China
5. School of Civil Engineering and Architecture, East China Jiaotong University, Nanchang 330013, China
浏览量2070
下载量1801
基金项目国家自然科学基金项目(资助号:52308236、52368031、52308243)、
中国博士后基金(资助号:2022M710973、2022M720648、2022M713497、2023M740881)、
黑龙江省自然科学基金联合引导项目(资助号:LH2023E069)、
江西省自然科学基金项目(资助号:20224BAB204067)资助。
参考文献[1] Sanderson K. The path towards more-sustainable building construction[J]. Nature, 2022, 611(7936): S18-S19.
https://doi.org/10.1038/d41586-022-03650-3
[2] Han B, Ding S, Wang J, et al. Nano-Engineered Cementitious Composites: Principles and Practices[M]. Singapore: Springer, 2019.
https://doi.org/10.1007/978-981-13-7078-6
[3] P. Kumar Mehta, Paulo J. M. Monteiro. Concrete: Microstructure, Properties, and Materials, Fourth Edition[M]. New York: McGraw-Hill Education, 2014.
https://www.accessengineeringlibrary.com/content/book/9780071797870
[4] Elhacham E, Ben-Uri L, Grozovski J, et al. Global human- made mass exceeds all living biomass[J]. Nature, 2020, 588(7838): 442-444.
https://doi.org/10.1038/s41586-020-3010-5
[5] 王欣悦, 丁思齐, 董素芬, 等. 混凝土可持续发展: 应对碳排放引起气候变化危机[J]. 工程材料与结构, 2022, 1(1): 1-14.
https://doi.org/10.48014/ems.20220728001
[6] Lothenbach B, Scrivener K, Hooton R D. Supplementary cementitious materials[J]. Cement and Concrete Research, 2011, 41(12): 1244-1256.
https://doi.org/10.1016/j.cemconres.2010.12.001
[7] Biernacki J J, Bullard J W, Sant G, et al. Cements in the 21 st century: Challenges, perspectives, and opportunities[J]. Journal of the American Ceramic Society, 2017, 100(7): 2746-2773.
https://doi.org/10.1111/jace.14948
[8] Han B, Zhang L, Ou J. Smart and Multifunctional Concrete Toward Sustainable Infrastructures[M]. Singapore: Springer, 2017.
https://doi.org/10.1007/978-981-10-4349-9
[9] Han B, Yu X, Ou J. Self-Sensing Concrete in Smart Structures[M]. Elsevier, 2014.
https://doi.org/10.1016/C2013-0-14456-X
[10] Juenger M C G, Winnefeld F, Provis J L, et al. Advances in alternative cementitious binders[J]. Cement and Concrete Research, 2011, 41(12): 1232-1243.
https://doi.org/10.1016/j.cemconres.2010.11.012
[11] Scrivener K L, Kirkpatrick R J. Innovation in use and research on cementitious material[J]. Cement and Concrete Research, 2008, 38(2): 128-136.
https://doi.org/10.1016/j.cemconres.2007.09.025
[12] Ding S, Wang X, Han B. New-Generation Cement-Based Nanocomposites[M]. Singapore: Springer, 2023.
https://doi.org/10.1007/978-981-99-2306-9
[13] Skibsted J, Hall C. Characterization of cement minerals, cements and their reaction products at the atomic and nano scale[J]. Cement and Concrete Research, 2008, 38(2): 205-225.
https://doi.org/10.1016/j.cemconres.2007.09.010
[14] Sanchez F, Sobolev K. Nanotechnology in concrete-A review[J]. Construction and Building Materials, 2010, 24(11): 2060-2071.
https://doi.org/10.1016/j.conbuildmat.2010.03.014
[15] Hanus M J, Harris A T. Nanotechnology innovations for the construction industry[J]. Progress in Materials Science, 2013, 58(7): 1056-1102.
https://doi.org/10.1016/j.pmatsci.2013.04.001
[16] Shirani S, Cuesta A, Morales-Cantero A, et al. 4D nanoimaging of early age cement hydration[J]. Nature Communications, 2023, 14(1): 2652.
https://doi.org/10.1038/s41467-023-38380-1
[17] Hewlett P C, Liska M. Lea’s chemistry of cement and concrete[M]. Elsevier, 2019.
https://doi.org/10.1016/C2013-0-19325-7
[18] Han B, Zhang L, Zeng S, et al. Nano-core effect in nano-engineered cementitious composites[J]. Composites Part A: Applied Science and Manufacturing, 2017, 95: 100-109.
https://doi.org/10.1016/j.compositesa.2017.01.008
[19] Wang X, Dong S, et al. Effect and mechanisms of nanomaterials on interface between aggregates and cement mortars[J]. Construction and Building Materials, 2020, 240: 117942.
https://doi.org/10.1016/j.conbuildmat.2019.117942
[20] Wang X, Ding S, Qiu L, et al. Improving bond of fiberreinforced polymer bars with concrete through incorporating nanomaterials[J]. Composites Part B: Engineering, 2022, 239: 109960.
https://doi.org/10.1016/j.compositesb.2022.109960
[21] Wang X, Zheng Q, Dong S, et al. Interfacial characteristics of nano-engineered concrete composites[J]. Construction and Building Materials, 2020, 259: 119803.
https://doi.org/10.1016/j.conbuildmat.2020.119803
[22] Wang X, Dong S, Ashour A, et al. Bond of nanoinclusions reinforced concrete with old concrete: Strength, reinforcing mechanisms and prediction model[J]. Construction and Building Materials, 2021, 283: 122741.
https://doi.org/10.1016/j.conbuildmat.2021.122741
[23] Wang X, Dong S, Ashour A, et al. Bond behaviors between nano-engineered concrete and steel bars[J]. Construction and Building Materials, 2021, 299: 124261.
https://doi.org/10.1016/j.conbuildmat.2021.124261
[24] Wang X, Dong S, Li Z, et al. Nanomechanical characteristics of interfacial transition zone in nano-engineered concrete[J]. Engineering, 2021, 239: 109960.
https://doi.org/10.1016/j.eng.2020.08.025
[25] Wang J, Dong S, Pang S D, et al. Pore structure characteristics of concrete composites with surface-modified carbon nanotubes[J]. Cement and Concrete Composites, 2022, 128: 104453.
https://doi.org/10.1016/j.cemconcomp.2022.104453
[26] Wang J, Wang X, Ding S, et al. Micro-nano scale pore structure and fractal dimension of ultra-high performance cementitious composites modified with nanofillers[J]. Cement and Concrete Composites, 2023, 141: 105129.
https://doi.org/10.1016/j.cemconcomp.2023.105129
[27] Han B, Li Z, Zhang L, et al. Reactive powder concrete reinforced with nano SiO2-coated TiO2[J]. Construction and Building Materials, 2017, 148: 104-112.
https://doi.org/10.1016/j.conbuildmat.2017.05.065
[28] Li H, Ding S, Zhang L, et al. Effects of particle size, crystal phase and surface treatment of nano-TiO2 on the rheological parameters of cement paste[J]. Construction and Building Materials, 2020, 239: 117897.
https://doi.org/10.1016/j.conbuildmat.2019.117897
[29] Li Z, Han B, Yu X, et al. Effect of nano-titanium dioxide on mechanical and electrical properties and microstructure of reactive powder concrete[J]. Materials Research Express, 2017, 4(9): 95008.
https://doi.org/10.1088/2053-1591/aa87db
[30] Wang D, Dong S, Wang X, et al. Investigating the compatibility of nickel coated carbon nanotubes and cementitious composites through experimental evidence and theoretical calculations[J]. Construction and Building Materials, 2021, 300: 124340.
https://doi.org/10.1016/j.conbuildmat.2021.124340
[31] Dong S, Wang D, Ashour A, et al. Nickel plated carbon nanotubes reinforcing concrete composites: from nano/micro structures to macro mechanical properties[J]. Composites Part A: Applied Science and Manufacturing, 2021, 141: 106228.
https://doi.org/10.1016/j.compositesa.2020.106228
[32] Han B, Zhang L, Sun S, et al. Electrostatic self-assembledcarbon nanotube/nano carbon black composite fillersreinforced cement-based materials with multifunctionality[J]. Composites Part A: Applied Science andManufacturing, 2015, 79: 103-115.
https://doi.org/10.1016/j.compositesa.2015.09.016
[33] Zhang L, Zheng Q, Dong X, et al. Tailoring sensingproperties of smart cementitious composites based onexcluded volume theory and electrostatic self-assembly[J]. Construction and Building Materials, 2020, 256: 119452.
https://doi.org/10.1016/j.conbuildmat.2020.119452
[34] Ding S, Xiang Y, Ni Y-Q, et al. In-situ synthesizing carbonnanotubes on cement to develop self-sensing cementitiouscomposites for smart high-speed rail infrastructures[J]. Nano Today, 2022, 43: 101438.
https://doi.org/10.1016/j.nantod.2022.101438
[35] Ding S, Wang X, Qiu L, et al. Self-sensing cementitiouscomposites with hierarchical carbon fiber-carbon nanotubecomposite fillers for crack development monitoring of amaglev girder[J]. Small, 2023, 19(9): 2206258.
https://doi.org/10.1002/smll.202206258
[36] Li L, Wang X, Du H, et al. Comparison of compressive fatigue performance of cementitious composites withdifferent types of carbon nanotube[J]. InternationalJournal of Fatigue, 2022, 165: 107178.
https://doi.org/10.1016/j.ijfatigue.2022.107178
[37] Li L, Zheng Q, Wang X, et al. Modifying fatigue performanceof reactive powder concrete through addingpozzolanic nanofillers[J]. International Journal of Fatigue, 2022, 156: 106681.
https://doi.org/10.1016/j.ijfatigue.2021.106681
[38] Wang J, Ding S, Han B, et al. Self-healing properties ofreactive powder concrete with nanofillers[J]. SmartMaterials and Structures, 2018, 27(11): 115033.
https://doi.org/10.1088/1361-665X/aae59f
[39] Li Z, Dong S, Ashour A, et al, Shah S P. On the incorporationof nano TiO2 to inhibit concrete deteriorationin the marine environment[J]. Nanotechnology, 2022, 33(13): 135704.
https://doi.org/10.1088/1361-6528/ac3f55
[40] Li Z, Ding S, Kong L, et al. Nano TiO2-engineered anticorrosionconcrete for sewage system[J]. Journal ofCleaner Production, 2022, 337: 130508.
https://doi.org/10.1016/j.jclepro.2022.130508
[41] Li Y, Dong S, Ahmed R, et al. Improving the mechanicalcharacteristics of well cement using botryoid hybridnano-carbon materials with proper dispersion[J]. Constructionand Building Materials, 2021, 270: 121464.
https://doi.org/10.1016/j.conbuildmat.2020.121464
[42] Ding S, Wang Y-W, Ni Y-Q, et al. Structural modal identificationand health monitoring of building structuresusing self-sensing cementitious composites[J]. Smart Materials and Structures, 2020, 29(5): 055013.
https://doi.org/10.1088/1361-665X/ab79b9
[43] Ding S, Xu C, Ni Y-Q, et al. Extracting piezoresistiveresponse of self-sensing cementitious composites undertemperature effect via Bayesian blind source separation[J]. Smart Materials and Structures, 2021, 30(6): 065010.
https://doi.org/10.1088/1361-665X/abf992
引用本文丁思齐, 王欣悦, 王佳亮, 等. 纳米工程化混凝土研究新进展[J]. 工程材料与结构, 2023, 2(4): 68-83.
CitationDING Siqi, WANG Xinyue, WANG Jialiang, et al. Latest research progress on nano-engineered concrete[J]. Engineering Materials and Structures, 2023, 2(4): 68-83.