摘要 | 淤泥作为一种城市固废, 因其含有一定的火山灰活性, 常被用作辅助胶凝材料。同时, 过氧化氢能够和淤泥中的部分成分如碳酸盐发生反应, 固化淤泥的同时生成气体, 能够在泡沫混凝土中起到发泡作用。本研究将淤泥应用于泡沫混凝土改性, 探究了不同活化方式和掺量下淤泥改性泡沫混凝土的性能。本研究评估了淤泥改性泡沫混凝土的抗压强度、吸水率和孔隙率, 并利用TOPSIS法对其进行评价, 以获得合适的淤泥掺量和活化方式。试验结果表明, 淤泥改性泡沫混凝土的抗压强度随着淤泥掺量的增加而下降。煅烧和球磨均能有效提升抗压强度, 且煅烧的提升效果更为明显。吸水率随淤泥掺量的提高和活化方式的增加而略有上升, 从32%提升至37%。伴随着活化方式从仅球磨到“两磨一烧”, 淤泥改性泡沫混凝土的机械性能得到了提升, 但发泡效果发生了下降。综合考虑抗压强度、吸水率强度和发泡效果, 10%淤泥掺量下, 煅烧后不经球磨的淤泥平衡了淤泥对强度和孔隙的影响, 获得了最佳的综合性能。 |
Abstract | Sludge, a type of urban solid waste, is commonly used as an auxiliary cementitious material due to its inherent volcanic ash activity. Furthermore, hydrogen peroxide can react with certain components in the sludge, such as carbonates, solidifying the sludge while generating gas, which can act as a foaming agent in foam concrete. This study explores the performance of sludge-modified foam concrete under different activation methods and sludge content. The compressive strength, water absorption, and porosity of the modified sludge foam concrete are evaluated, and the TOPSIS method is employed for assessment to determine the appropriate sludge content and activation method. The experimental results indicate that increasing the sludge content and simplifying the activation method result in decreased compressive strength but improved foaming effect of the modified sludge foam concrete. Calcination has a significant impact on compressive strength, while grinding has a more pronounced effect on water absorption. Taking into account compressive strength, water absorption, and foaming effect, this study concludes that sludge with a 10% content, subjected to a single calcination process, can maximize the performance of the modified sludge foam concrete. |
DOI | 10.48014/ems.20240718001 |
文章类型 | 研究性论文 |
收稿日期 | 2024-07-18 |
接收日期 | 2024-08-09 |
出版日期 | 2024-09-28 |
关键词 | 泡沫混凝土, 淤泥活化, 过氧化氢, TOPSIS, 孔隙率 |
Keywords | Foam concrete, sludge activation, hydrogen peroxide, TOPSIS, porosity |
作者 | 杨佳澎, 李志鹏* |
Author | YANG Jiapeng, LI Zhipeng* |
所在单位 | 天津大学 建筑工程学院, 天津 300072 |
Company | School of Civil Engineering, Tianjin University, Tianjin 300072, China |
浏览量 | 278 |
下载量 | 89 |
基金项目 | 天津市自然科学基金资助项目(21JCZDJC00410;22JCYBJC00620) |
参考文献 | [1] XU J-H, FLEITER T, FAN Y, et al. CO2 emissions reduction potential in China’s cement industry compared to IEA’s Cement Technology Roadmap up to 2050[J]. Applied Energy, 2014, 130: 592-602. https://doi.org/10.1016/j.apenergy.2014.03.004 [2] HALLIDAY J E, JONES M R, DYER T D, et al. Potential use of UK sewage sludge ash in cement-based concrete[J]. Proceedings of the Institution of Civil Engineers Waste and Resource Management, 2012, 165(2): 5766. https://doi.org/10.1680/warm.2012.165.2.57 [3] 杨会臣, 王培. 湖库疏浚技术及淤积物资源化利用技术进展[J]. 中国水能及电气化, 2021(08): 39-42. https://doi.org/10.16617/j.cnki.115543/TK.2021.08.10 [4] 徐杨. 城市河道淤泥特性及其资源化利用技术研究[D]. 南京: 南京大学, 2020. https://doi.org/10.27235/d.cnki.gnjiu.2015.000027 [5] 赵笛, 朱先杰, 侯志强, 等. 疏浚淤泥有机质含量及其对固化淤泥强度的影响[J]. 河南科学, 2019, 37(10): 1634-9. [6] 邓琪丰, 刘卫东, 韩云婷. 发泡剂对淤泥固化性能的影响研究[J]. 新型建筑材料, 2022, 49(07): 138-43. [7] 欧阳鹏. 双氧水发泡泡沫混凝土性能的研究[D]. 沈阳: 沈阳建筑大学, 2014. [8] 李秀. 发泡剂的制备与泡沫混凝土的性能研究[D]. 沈阳: 沈阳建筑大学, 2015. [9] 王旭. 浅层淤泥质土固化剂研究[D]. 杭州: 浙江大学, 2018. https://doi.org/10.27461/d.cnki.gzjdx.2018.000115 [10] 周鲲, 谭彬, 李玉平, 等. 双氧水的发泡及其在制造轻混凝土中的应用[J]. 四川建材, 2020, 46(02): 4-5. [11] 胡皞, 贾兴文. 催化剂在双氧水发泡超轻泡沫混凝土中的应用研究[J]. 建筑砌块与砌块建筑, 2015(05): 41-44. [12] 倪亚玲, 崔敬轩, 何捷, 等. 河湖淤泥性能及建材化利用研[J]. 武汉理工大学学报, 2022, 44(06): 6-13. [13] 吴文鑫, 吕通. 烧结底泥-水泥混凝土性能提升机制研究[J]. 人民长江: 1-7. [2024-11-09]. http://kns.cnki.net/kcms/detail/42.1202.TV.20240617.1622.006.html. [14] SHIH H-S, SHYUR H-J, LEE E S. An extension of TOPSIS for group decision making [J]. Mathematical and Computer Modelling, 2007, 45(7): 801-13. https://doi.org/10.1016/j.mcm.2006.03.023 [15] 于敏, 王鹏. 基于全生命周期评估与多目标优化的再生混凝土应用研究[J]. 工程管理学报, 2022, 36(06): 54-59. https://doi.org/10.13991/j.cnki.jem.2022.06.010 [16] FYTILI D, ZABANIOTOU A. Utilization of sewage sludge in EU application of old and new methods—A review[J]. Renewable and Sustainable Energy Reviews, 2008, 12(1): 116-40. https://doi.org/10.1016/j.rser.2006.05.014 [17] CHEN Z, POON C S. Comparative studies on the effects of sewage sludge ash and fly ash on cement hydration and properties of cement mortars[J]. Construction and Building Materials, 2017, 154: 791-803. https://doi.org/10.1016/j.conbuildmat.2017.08.003 [18] 陈士博. 泡沫混凝土孔结构测试与图像分析法应用研究[D]. 泰安: 山东农业大学, 2023. [19] 齐玮. 泡沫混凝土物理力学性能与孔隙特征的研究[D]. 沈阳: 沈阳建筑大学, 2017. [20] 宋强, 邹颖杰, 张鹏, 等. 泡沫混凝土气泡性能与基体材料研究进展[J]. 硅酸盐学报, 2024, 52(02): 706-724. https://doi.org/10.14062/j.issn.0454-5648.20230495 |
引用本文 | 杨佳澎, 李志鹏. 不同淤泥掺量和活化方式下泡沫混凝土的性能探究[J]. 工程材料与结构, 2024, 3(3): 38-45. |
Citation | YANG Jiapeng, LI Zhipeng. Research on the performance of foam concrete with different sludge contents and activation methods[J]. Engineering Materials and Structures 2024, 3(3): 38-45. |