摘要 | 极端干旱天气是导致水资源短缺最重要、最直接的原因, 河湖水量调度失衡无法缓解水资源紧缺的供需矛盾。在极端干旱和人为活动因素双重胁迫下, 河湖湿地生态系统严重受损, 湿地退化明显加剧。2022年极端干旱给长江中下游及洞庭湖、鄱阳湖等湿地生态造成了巨大影响。为了探讨这一迫切需要解决的重大难题, 本文以洞庭湖和长江相关河系的依存关系为研究对象, 通过广泛的资料收集、现场调研和理论分析, 在研究极端干旱气候特征与流域水文响应关系的基础上, 聚焦江湖水量调度管理与湿地生态风险管控两大科学问题, 探讨气候变化和人类活动下河湖水文要素变异特性, 提出生态环境优先保护和发展战略, 构建流域湿地生境与水资源保护治理新格局, 实现以目标管理为导向, 倒逼水量调度, 创新调控手段和技术方法, 优化河湖水量调度管理模式, 增强水资源调蓄能力, 为水资源利用与湿地生态保育的协同发展提供重要的理论价值。 |
Abstract | Extreme dry weather is the most important and direct cause of water shortage. The imbalance of water regulation of rivers and lakes cannot alleviate the contradiction between supply and demand of water resources. Under the dual stress of extreme drought and human activities, the river lake wetland ecosystem was seriously damaged and the wetland degradation was significantly intensified. The extreme drought in 2022 has made a huge impact on the middle and lower reaches of the Yangtze River including the wetland ecology of the related lakes such as the Dongting Lake and the Poyang Lake. In order to find out solutions of solving such major problem, this paper, takeing the dependency relationship between the Dongting Lake and the related water systems of the Yangtze River as the research object, through extensive data collection, field survey and theoretical analysis based on the study of the relationship between extreme drought climate characteristics and watershed hydrological response, focuses on the two major scientific issues of water regulation management and wetland ecological risk management and control, and explores the variation characteristics of river and lake hydrological elements under climate change and human activities. Finally, the priority protection and development strategy of ecological environment is proposed and a new governance pattern for wetland habitat and water resource protection in river basin is constructed to realize the goal-oriented management, reverse water dispatch, innovate regulation means and technical methods, optimize the water regulation and management mode of rivers and lakes, and to enhance the water resource regulation and storage capacity. This paper will provide important theoretical value for the coordinated development of water resource utilization and wetland ecological conservation. |
DOI | 10.48014/fcws.20240126001 |
文章类型 | 综 述 |
收稿日期 | 2024-01-26 |
接收日期 | 2024-05-23 |
出版日期 | 2024-09-28 |
关键词 | 极端干旱, 河湖, 水量调度, 湿地, 生态保育 |
Keywords | Extreme drought, rivers and lakes, water dispatch, wetland, ecological conservation |
作者 | 周念清1,*, 郭梦申1, 蔡奕1, 陆帅帅1, 刘晓群2, 赵文刚2 |
Author | ZHOU Nianqing1,*, GUO Mengshen1, CAI Yi1, LU Shuaishuai1, LIU Xiaoqun2, ZHAO Wengang2 |
所在单位 | 1. 同济大学土木工程学院, 上海 200092 2. 湖南省水利水电科学研究院, 长沙 410007. |
Company | 1. School of Civil Engineering, Tongji University, Shanghai 200092, China 2. Hunan Institute of Water Resources and Hydropower Research, Changsha 410007, China . |
浏览量 | 344 |
下载量 | 97 |
基金项目 | 基金项目:国家自然科学基金战略研究项目(42242202)和国家自然科学基金(42272291,42077176)资助。 |
参考文献 | [1] 施上粟, 黃国文, 黃志伟, 等. 滞洪池湿地生态功能评价指数建立及应用[J]. 农业工程学报, 2016, 62(3): 1-12. https://doi.org/10.29974/jtae.201609_62(3).0001 [2] Yan, L B, Xie, C K, Liang, A Z, et al. Comprehensive Management of Rural Water Pollution in Polder Wetland: a Case Study of the Chenhai Wei Polder Wetland in the Taihu Basin of China[J]. Wetlands, 2021, 41(2): 32. https://doi.org/10.1007/s13157-021-01428-3 [3] Xu, X B, Chen, M K, Yang, G S, et al. Wetland ecosystem services research: A critical review[J]. Global Ecology and Conservation, 2020, 22: e01027. https://doi.org/10.1016/j.gecco.2020.e01027 [4] 吴海东, 闫钟清, 张克柔, 等. 高原泥炭地CO2通量对极端干旱的响应机理研究[J]. 林业科学研究, 2020, 33(04): 92-101. https://doi.org/10.13275/j.cnki.lykxyj.2020.04.012 [5] Jiménez, M A, Jaksic, F M, Armesto, J J, et al. Extreme climatic events change the dynamics and invasibility of semi-arid annual plant communities[J]. Ecology Letters, 2011, 14(12): 1227-1235. https://doi.org/10.1111/j.1461-0248.2011.01693.x [6] Talley, Trigg. Call for Expert Reviewers to the U. S. Government Review of the Working Group II Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change(IPCC), Impacts, Adaptation & Vulnerability[J]. State Department Documents/ FIND, 2013, 78(062). https://kns.cnki.net/kcms2/article/abstract?v=vdPasdvfHvvBTu5sw-rm-RgGSVgW7VpnG3Tp2Ln3pY4Te1odnIzVIUCdgvHIrV8wRhLgtS2F3htxDJ_xzAKip8RUnbPc8GJhScCn6kDSFqqR0-lF8iVeEBkGhg6j1iOqP20pmcOvHwtXpYMrKK8jdu6NznRKR_rM50LCFkTFuTw=&uniplatform=NZKPT&language=CHS#journal-summarize [7] Easterling, D R, Meehl, G A, Parmesan, C, et al. Climate Extremes: Observations, Modeling, and Impacts[J]. Science, 2000, 289(5487): 2068-2074. https://doi.org/10.1126/science.289.5487.2068 [8] Meehl, G A, Tebaldi, C. More Intense, More Frequent, and Longer Lasting Heat Waves in the 21st Century[J]. Science, 2004, 305(5686): 994-997. https://doi.org/10.1126/science.1098704 [9] Jiang, Z H, Song, J, Li, L, et al. Extreme climate events in China: IPCC-AR4 model evaluation and projection[J]. Climatic Change, 2012, 110(1): 385-401. https://doi.org/10.1007/s10584-011-0090-0 [10] Smith, M D. The ecological role of climate extremes: current understanding and future prospects[J]. Journal of Ecology, 2011, 99(3): 651-655. https://doi.org/10.1111/j.1365-2745.2011.01833.x [11] 刘存歧, 陆健健, 李贺鹏. 长江口潮滩湿地土壤酶活性的陆向变化以及与环境因子的相关性[J]. 生态学报, 2007,(09): 3663-3669. https://www.ecologica.cn/stxb/article/abstract/1000-0933200709-3663-07?st=search [12] 李彦娇, 赵干卿, 彭舜磊, 等. 极端干旱事件后湿地落干土壤微生物和酶活性研究[J]. 天津科技大学学报, 2017, 32(05): 55-59. https://doi.org/10.13364/j.issn.1672-6510.20160064 [13] 陈春宏, 谢卫华. 从“湿地日主题”谈湿地与渔业的关系、存在问题及对策[J]. 黑龙江水产, 2007,(05): 41-42. https://www.cqvip.com/QK/83450X/200705/25596692.html [14] 田振兴, 昝梅, 汪进欣. 基于MODIS遥感数据的鄱阳湖流域生态系统生产力变化研究[J]. 生态环境学报, 2018, 27(10): 1933-1942. https://doi.org/10.16258/j.cnki.1674-5906.2018.10.019 [15] 刘家倩, 陆建忠, 田晴, 等. 干旱对鄱阳湖流域植被生态系统GEP的影响[J]. 华中师范大学学报(自然科学 版), 2022, 56(03): 513-522. https://doi.org/10.19603/j.cnki.1000-1190.2022.03.019 [16] 张彬, 朱建军, 刘华民, 等. 极端降水和极端干旱事件对草原生态系统的影响[J]. 植物生态学报, 2014, 38(09): 1008-1018. https://doi.org/10.3724/SP.J.1258.2014.00095 [17] 周贵尧, 周灵燕, 邵钧炯, 等. 极端干旱对陆地生态系统的影响: 进展与展望[J]. 植物生态学报, 2020, 44(05): 515-525. https://doi.org/10.17521/cjpe.2019.0317 [18] Jentsch, A, Kreyling, J, Elmer, M, et al. Climate extremes initiate ecosystem-regulating functions while maintaining productivity[J]. Journal of Ecology, 2011, 99(3): 689-702. https://doi.org/10.1111/j.1365-2745.2011.01817.x [19] Mitsch, W J, Bernal, B, Nahlik, A M, et al. Wetlands, carbon, and climate change[J]. Landscape Ecology, 2013, 28(4): 583-597. https://doi.org/10.1007/s10980-012-9758-8 [20] Tian, H. Modeling Primary Productivity of the Terrestrial Biosphere in Changing Environments: Toward a Dynamic Biosphere Model[J]. Critical Reviews in Plant Sciences, 1998, 17(5): 541-557. https://doi.org/10.1016/s0735-2689(98)00364-5 [21] Smith, M D, Knapp, A K, Collins, S L. A framework for assessing ecosystem dynamics in response to chronic resource alterations induced by global change[J]. Ecology, 2009, 90(12): 3279-3289. https://doi.org/10.1890/08-1815.1 [22] Rajan, N, Maas, S J, Cui, S. Extreme Drought Effects on Carbon Dynamics of a Semiarid Pasture[J]. Agronomy Journal, 2013, 105(6): 1749-1760. https://doi.org/10.2134/agronj2013.0112 [23] 张远, 郝彦宾, 崔丽娟, 等. 极端干旱对若尔盖高原泥炭地生态系统CO2通量的影响[J]. 中国科学院大学学报, 2017, 34(04): 462-470. https://doi.org/10.13275/j.cnki.lykxyj.2020.04.012 [24] 孙可可, 陈进. 典型洪水和干旱过程对湖泊湿地的生态作用[J]. 长江科学院院报, 2013, 30(05): 5-8+12. https://doi.org/10.3969/j.issn.1001-5485.2013.05.02 [25] 侯军, 刘小刚, 严登华, 等. 呼伦湖湿地生态干旱评价[J]. 水利水电技术, 2015, 46(04): 22-25. https://doi.org/10.13928/j.cnki.wrahe.2015.04.005 [26] 王青, 严登华, 翁白莎, 等. 流域干旱对淡水湖泊湿地生态系统的影响机制[J]. 湿地科学, 2012, 10(04): 396-403. https://doi.org/10.13248/j.cnki.wetlandsci.2012.04.012 [27] 邓志民, 张翔, 张华, 等. 鄱阳湖湿地土壤-植物-地下水稳定氧同位素组成分析[J]. 长江流域资源与环境, 2016, 25(06): 989-995. https://doi.org/10.11870/cjlyzyyhj201606016 [28] Reichstein, M, Bahn, M, Ciais, P, et al. Climate extremes and the carbon cycle[J]. Nature, 2013, 500(7462): 287-295. https://doi.org/10.1038/nature12350 [29] 白美兰, 郝润全, 沈建国. 近46a气候变化对呼伦湖区域生态环境的影响[J]. 中国沙漠, 2008,(01): 101-107. https://www.cqvip.com/QK/71135X/201107/26292147.html [30] 郑治斌, 邓艳君, 黄永平. 极端天气气候事件对江汉湖群湿地生态的影响研究[J]. 人民长江, 2021, 52(S2): 45-51. https://doi.org/10.16232/j.cnki.1001-4179.2021.S2.011 [31] 李明峰, 董云社, 齐玉春, 等. 极端干旱对温带草地生态系统CO2、CH4、N2O通量特征的影响[J]. 资源科学, 2004,(03): 89-95. https://www.resci.cn/CN/Y2004/V26/I3/89 [32] 李新荣, 谭会娟, 何明珠, 等. 阿拉善高原灌木种的丰富度和多度格局对环境因子变化的响应: 极端干旱荒漠地区灌木多样性保育的前提[J]. 中国科学(D辑:地球 科学), 2009, 39(04): 504-515. https://doi.org/10.12677/WJF.2015.41002 [33] 张继义, 赵哈林. 短期极端干旱事件干扰后退化沙质草地群落恢复力稳定性的测度与比较[J]. 生态学报, 2011, 31(20): 6060-6071. https://www.ecologica.cn/stxb/article/abstract/stxb201106020738?st=search [34] 刘殿君, 吴波, 李永华, 等. 极端干旱区增雨加速泡泡刺群落土壤碳排放[J]. 生态学报, 2012, 32(17): 5396-5404. https://doi.org/10.5846/stxb201202080161 [35] 木巴热克·阿尤普, 陈亚宁, 郝兴明, 等. 极端干旱环境下的胡杨木质部水力特征[J]. 生态学报, 2012, 32(09): 2748-2758. https://doi.org/10.5846/stxb201103290404 [36] Zhang, Q, Li, L, Wang, Y G, et al. Has the Three-GorgesDam made the Poyang Lake wetlands wetter anddrier?[J]. Geophysical Research Letters, 2012, 39(20). https://doi.org/10.1029/2012GL053431 [37] 王丽婧, 郑丙辉, 王圣瑞, 等. 长江经济带建设背景下“两湖”生态环境保护的问题与对策[J]. 环境保护, 2017, 45(15): 27-31. https://doi.org/10.14026/j.cnki.0253-9705.2017.15.005 [38] Feng, L, Hu, C M, Chen, X L, et al. Dramatic InundationChanges of China’s Two Largest FreshwaterLakes Linked to the Three Gorges Dam[J]. EnvironmentalScience & Technology, 2013, 47(17): 9628-9634. https://doi.org/10.1021/es4009618 [39] Feng, L, Hu, C, Chen, X. Satellites Capture the DroughtSeverity Around China's Largest Freshwater Lake[J]. IEEE Journal of Selected Topics in Applied Earth Observationsand Remote Sensing, 2012, 5(4): 1266-1271. https://doi.org/10.1109/JSTARS.2012.2188885 [40] 高耶, 谢永宏, 邹冬生, 等. 近40年洞庭湖区内湖水面面积变化及其驱动因素[J]. 湖泊科学, 2019, 31(03): 755-765. https://doi.org/10.18307/2019.0314 [41] Wang, H X, Huang, L T, Guo, W X, et al. Evaluation ofecohydrological regime and its driving forces in theDongting Lake, China[J]. Journal of Hydrology: RegionalStudies, 2022, 41: 101067. https://doi.org/10.1016/j.ejrh.2022.101067 [42] Huang, Q, Sun, Z D, Opp, C, et al. HydrologicalDrought at Dongting Lake: Its Detection, Characterization, and Challenges Associated with Three GorgesDam in Central Yangtze, China[J]. Water ResourcesManagement, 2014, 28(15): 5377-5388. https://doi.org/10.1007/s11269-014-0807-8 [43] 许继军, 陈进. 三峡水库运行对鄱阳湖影响及对策研究[J]. 水利学报, 2013, 44(07): 757-763. https://doi.org/10.13243/j.cnki.slxb.2013.07.009 [44] Zhang, Z T, Jin, G Q, Tang, H W, et al. How does thethree gorges dam affect the spatial and temporal variationof water levels in the Poyang Lake?[J]. Journal ofHydrology, 2022, 605: 127356. https://doi.org/10.1016/j.jhydrol.2021.127356 [45] 吕婷婷, 陈界仁, 任莎莎. 三峡枢纽运用后鄱阳湖的水位变化特性分析[J]. 水资源与水工程学报, 2018, 29(05): 41-45. https://doi.org/10.11705/j.issn.1672-643X.2018.05.07 [46] Xie, Y H, Tang, Y, Chen, X S, et al. The impact of Three Gorges Dam on the downstream eco-hydrologicalenvironment and vegetation distribution of EastDongting Lake[J]. Ecohydrology, 2015, 8(4): 738-746. https://doi.org/10.1002/eco.1543 [47] Yang, L, Wang, L C, Yu, D Q, et al. Four decades ofwetland changes in Dongting Lake using Landsat observationsduring 1978-2018[J]. Journal of Hydrology, 2020, 587: 124954. https://doi.org/10.1016/j.jhydrol.2020.124954 [48] 李峰, 谢永宏, 陈心胜, 等. 三峡工程运行对洞庭湖湿地植被格局的影响及调控机制[J]. 农业现代化研究, 2018, 39(06): 937-944. https://doi.org/10.13872/j.1000-0275.2018.0085 [49] Wu, H P, Zeng, G M, Liang, J, et al. Effect of early dryseason induced by the Three Gorges Dam on the soilmicrobial biomass and bacterial community structure inthe Dongting Lake wetland[J]. Ecological Indicators, 2015, 53: 129-136. https://doi.org/10.1016/j.ecolind.2015.01.041 [50] 中华人民共和国生态环境部. 长江三峡工程生态与环境监测公报(2015-2018)[R]. 2018. http://www.jlakes.org/ch/reader/view_news.aspx?id=20180412095421613 [51] 王丽婧, 田泽斌, 李莹杰, 等. 洞庭湖近30年水环境演变态势及影响因素研究[J]. 环境科学研究, 2020, 33(05): 1140-1149. https://doi.org/10.13198/j.issn.1001-6929.2020.03.08 [52] Geng, M M, Wang, K L, Yang, N, et al. Evaluation andvariation trends analysis of water quality in response towater regime changes in a typical river-connected lake(Dongting Lake), China[J]. Environmental Pollution, 2021, 268: 115761. https://doi.org/10.1016/j.envpol.2020.115761 [53] Ding, Y K, Wang, S R, Zhang, W Q, et al. A rule ofhydrological regulating on nutritional status of PoyangLake, since the operation of the Three Gorges Dam[J]. Ecological Indicators, 2019, 104: 535-542. https://doi.org/10.1016/j.ecolind.2019.04.054 [54] 陆健健, 何文珊, 童春富. 湿地生态学[M]. 北京: 高等教育出版社, 2006. [55] 毛志刚, 谷孝鸿, 陆小明, 等. 太湖东部不同类型湖区底泥疏浚的生态效应[J]. 湖泊科学, 2014, 26(03): 385-392. https://doi.org/10.18307/2014.0308 [56] 邓正苗, 谢永宏, 陈心胜, 等. 洞庭湖流域湿地生态修复技术与模式[J]. 农业现代化研究, 2018, 39(06): 994-1008. https://doi.org/10.13872/j.1000-0275.2018.0089 [57] 杨胜苏, 刘卫柏. 基于恢复生态学的洞庭湖区“山水林田湖草”生态修复研究[J]. 生态学报, 2021, 41(16): 6430-6439. http://dx.doi.org/10.5846/stxb202008012006 [58] Zhao, Y, Luo, J, Li, T, et al. A Framework to IdentifyPriority Areas for Restoration: Integrating Human Demandand Ecosystem Services in Dongting Lake Eco-EconomicZone, China[J]. Land, 2023, 12(5). https://doi.org/10.3390/land12050965 [59] 朱江, 林小莉. 湖泊湿地生态修复规划研究:以岳阳南湖湿地生态修复为例[J]. 湿地科学与管理, 2020, 16(03): 12-16. https://www.cqvip.com/qk/97658a/20203/7102868230.html [60] Wu, Y H, Zhou, N Q, Wu, Z J, et al. Carbon, nitrogenand phosphorus coupling relationships and their influencingfactors in the critical zone of Dongting Lakewetlands, China[J]. Journal of Groundwater Scienceand Engineering, 2022, 10(3): 250-266. https://doi.org/10.19637/j.cnki.2305-7068.2022.03.004 [61] 管桂玲, 付东王, 程昝, 等. 长江中下游洲滩型湿地生态系统重构研究[J]. 人民长江, 2023, 54(11): 36-42. https://doi.org/10.16232/j.cnki.1001-4179.2023.11.006 [62] 邓武军, 周嘉康, 廖江威, 等. 内湖流域水环境综合治理与可持续发展试点研究———以湖南省大通湖流域为例[J]. 中国水利, 2023,(12): 57-60. https://kns.cnki.net/kcms/detail/11.1374.TV.20230702.1159.016.html [63] 黄草, 陈叶华, 李志威, 等. 洞庭湖区水系格局及连通性优化[J]. 水科学进展, 2019, 30(05): 661-672. https://doi.org/10.14042/j.cnki.32.1309.2019.05.006 |
引用本文 | 周念清, 郭梦申, 蔡奕, 等. 极端干旱与河湖水量调度失衡胁迫下湿地生态保育研究[J]. 中国水科学前沿, 2024, 2(3): 23-34. |
Citation | ZHOU Nianqing, GUO Mengshen, CAI Yi, et al. Research on wetland ecological conservation under extreme drought and unbalanced water management of rivers and lakes[J]. Frontiers of Chinese Water Sciences, 2024, 2(3): 23-34. |