摘要 | 120℃固化增韧环氧碳纤维织物复合材料是目前航空应用的主要结构材料, 针对大型复合材料制件蒙皮、隔板、肋、整流罩等典型结构使用120℃固化增韧环氧碳纤维织物复合材料的迫切需求, 依托国内前期复合材料的研究基础和积累的经验, 采用两步热熔法制备了120℃固化增韧环氧碳纤维织物复合材料, 确定了典型固化成型工艺参数, 对增韧树脂体系的DSC特性、红外光谱特征、流变性能等开展了研究, 验证了耐热性和固化成形工艺适应性, 评价了复合材料的物理性能、室温力学性能、韧性性能和高低温力学性能, 建立了较为完备的性能数据。研究结果表明, 制备的120℃固化增韧环氧碳纤维织物预浸料具有良好的工艺性, 树脂含量精度达到了±2%、纤维面密 度精度达到了±5%, 可适用于热压罐成型工艺, 满足了航空大尺寸制件成型对预浸料的控制要求。材料的玻璃化转变温度较高, 复合材料性能满足指标要求, 力学性能优异, 在高温湿热条件下保持了较高的拉伸性能和层间剪切性能, 耐湿热性良好, 综合性能优异。 |
Abstract | The 120℃ curing toughened epoxy carbon fiber fabric composites are the main structural materials used in aviation at present. In view of the urgent need of using 120℃ curing toughened epoxy carbon fiber fabric composites for typical structures such as skin, partition, rib and fairing of large-scale composite materials, and relying on the research foundation and accumulated experience of domestic earlier composites, In this paper, 120℃ curing toughened epoxy carbon fiber fabric composites were prepared by two-step hot-melt method, the typical curing process parameters were determined, the DSC characteristics, IR spectra and rheological properties of toughened resin system were studied, the heat resistance and curing process adaptability were verified, and the physical properties, room temperature mechanical properties of the composites, the properties of toughness and high and low temperature mechanical properties were evaluated, and established relatively complete performance data. The results show that the prepreg prepared by curing toughened epoxy carbon fiber fabric at 120℃ has good technicality, the precision of resin content reaches±2% and the precision of fiber surface density reaches±5%. It can be applied to the forming process of hot-pressing pot, and meets the control requirements of the prepreg by the large-scale aeronautical molding. The glass transition temperature of the material is high, the properties of the composite meet the requirements of the index, the mechanical properties are excellent, the tensile properties and interlaminar shear properties are maintained at high temperature and humidity, the resistance to heat and humidity is good, and the comprehensive properties are excellent. |
DOI | 10.48014/pcms.20241129002 |
文章类型 | 研究性论文 |
收稿日期 | 2024-11-29 |
接收日期 | 2024-12-19 |
出版日期 | 2025-03-28 |
关键词 | 120℃固化, 增韧, 环氧树脂, 复合材料, 性能研究 |
Keywords | 120℃ curing, toughened, epoxy resin, composite materials, properties research |
作者 | 高丽红1,*, 杨健1, 王洁宇2, 钟振全1 |
Author | GAO Lihong1,*, YANG jian1, WANG Jieyu2, ZHONG Zhenquan1 |
所在单位 | 1. 航空工业一飞院, 西安 710089 2. 中航复合材料有限责任公司, 北京 101300 |
Company | 1. AVIC The First Aircraft Institute, Xi’an 710089, China 2. AVIC Composite Corporation Ltd. , Beijing 101300, China |
浏览量 | 25 |
下载量 | 9 |
参考文献 | [1] 陈祥宝, 张宝艳, 邢丽英. 先进树脂基复合材料技术发展及应用现状[J]. 中国材料进展, 2009, 28(6): 11. [2] 益小苏. 先进复合材料技术研究与发展[M]. 北京: 国防工业出版社, 2006. [3] 顾超英. 碳纤维复合材料在航空航天领域的开发与应用[J]. 化工文摘, 2009(1): 17-18. [4] 江润莲, 赵玉涛. 先进复合材料在军事领域的应用[J]. 材料导报, 2004, 18(F04): 3. https://doi.org/10.3321/j.issn:1005-023X.2004.z1.101. [5] 杜善义. 先进复合材料与航空航天[C]//2006复合材料 技术与应用可持续发展工程科技论坛. 2006. [6] 任晓华. 航空复合材料制造技术发展[J]. 航空科学技术, 2010(4): 4. https://doi.org/10.3969/j.issn.1007-5453.2010.04.001. [7] 陈祥宝. 聚合物基复合材料手册[M]. 北京: 化学工业出版社, 2004. [8] 何东晓. 先进复合材料在航空航天的应用综述[J]. 高科技纤维与应用, 2006(02): 9-11. https://doi.org/10.3969/j.issn.1007-9815.2006.02.003. [9] 姚康德, 成国祥. 环氧树脂增韧研究进展[J]. 热固性树脂, 2001. [10] 何崇军, 蔡立彬, 崔英德. 环氧树脂固化体系研究进展[J]. 广州化工, 2002, 30(004): 109-111. https://doi.org/10.3969/j.issn.1001-9677.2002.04.034. [11] 谢富原. 先进复合材料制造技术[M]. 北京: 航空工业出版社, 2017. [12] 苏鹏, 崔文峰. 先进复合材料热压罐成型技术[J]. 现代制造技术与装备, 2016(11): 2. https://doi.org/10.3969/j.issn.1673-5587.2016.11.089. [13] 陈祥宝. 高性能树脂基体[M]. 北京: 化学工业出版社, 1999. [14] 谢瑞广, 丘哲明, 王斌, 等. 中温固化环氧树脂体系的现状与发展[J]. 化学与粘合, 2003(5): 5. https://doi.org/10.3969/j.issn.1001-0017.2003.05.013. [15] 吴良义, 罗兰, 温晓蒙. 热固性树脂基体复合材料的应用及其工业进展[J]. 热固性树脂, 2008, 23(B08): 10. https://doi.org/10.3969/j.issn.1002-7432.2008.z1.007. [16] 谢瑞广, 丘哲明, 王斌, 等. 中温固化环氧树脂体系的现状与发展[J]. 化学与粘合, 2003(5): 5. https://doi.org/10.3969/j.issn.1001-0017.2003.05.013. [17] 加 张凤翻, 加 于华, 加 张雯婷. 热固性树脂基复合材料预浸料使用手册[M]. 北京: 中国建材工业出版社, 2019. [18] 沈超. 3238 树脂及其改性[J]. 航空学报, 2008, 29(3): 5. https://doi.org/10.3321/j.issn:1000-6893.2008.03.035. [19] 乌云其其格, 金鹏, 李峰, 等. 中温预固化高性能环氧树脂复合材料性能研究[J]. 高科技纤维与应用, 2021, 46(3): 5. https://doi.org/10.3969/j.issn.1007-9815.2021.03.003. [20] 白云起, 薛丽梅, 刘云夫. 环氧树脂的改性研究进展[J]. 化学与粘合, 2007, 29(4): 5. https://doi.org/10.3969/j.issn.1001-0017.2007.04.018. [21] 朱凯, 沈超. H300碳纤维及其预浸料性能研究[J]. 高科技纤维与应用, 2011, 36(4): 4. https://doi.org/10.3969/j.issn.1007-9815.2011.04.007. [22] 王洁宇, 沈超, 朱凯. 中温固化环氧复合材料的颗粒增韧技术[J]. 江西化工, 2012, 000(002): 123-129. https://doi.org/10.3969/j.issn.1008-3103.2012.02.034. |
引用本文 | 高丽红, 杨健, 王洁宇, 等. 一种120℃固化增韧环氧碳纤维织物复合材料性能研究[J]. 中国材料科学进展, 2025, 4(1): 1-11. |
Citation | GAO Lihong, YANG jian, WANG Jieyu, et al. Study on the properties of 120℃ curing toughened epoxy carbon fiber fabric composites[J]. Progress in Chinese Materials Sciences, 2025, 4(1): 1-11. |