摘要 | 海洋深水钻井井下溢流及井喷的防控是急需解决的海洋油气开发重大难题, 行之有效的措施是发现井下早期溢流并及时采取井筒压力控制措施, 其关键在于溢流的监测。基于此, 本文分析了深水钻井井控面临的主要困难, 水深、低温环境、泥浆性能变化、窄安全密度窗口等导致井控难度增加。系统的对比分析了现有深水钻井溢流监测方法的特点, 指明了深水钻井溢流监测技术逐渐向着能够更早、更准确、更智能发现溢流的方向发展。通过分析深水钻井的井控难点和溢流监测方法的适应性, 设计了一套海洋深水钻井溢流综合监测技术核心体系, 分析了该技术体系的工作原理, 形成了以井眼随钻监测为核心、海水段监测和平台监测为辅助的系统方法, 该方法可及时、准确、自动发现井下溢流, 也可用于指导井筒压力控制作业和监控压井施工过程。本文为我国海洋深水钻井早期溢流监测技术的研究指明了方向, 具有重要的现实意义。 |
Abstract | The prevention and control of kick or blowout for offshore deep-water drilling is a major issue facing the offshore oil and gas development. The effective means is the kick early detection technology, and respond in a timely manner. The key lies in the monitoring of kick. Based on this, this article analyzed the main difficulties facing well control problem in deep-water drilling, due to factors such as water depth, low temperature environment, changes in mud performance, and narrow safety density window, which cause increased difficulty in well control. The characteristics of existing kick detection methods for deep-water drilling were contrasted and analyzed systematically, and indicated the development direction of being able to detect overflow earlier, more accurately, and intelligently of kick detection technology for deep-water drilling. By analyzing the well control difficulties of deepwater drilling and the adaptability of overflow monitoring methods, designed a core technology system of kick integrated detection for deep-water drilling, and analyzed the working principle of this system, the systemic method with borehole monitoring as the core, ocean floor and platform. monitoring method as auxiliary have been formed. This method not only can be used in kick early detection, but also can be used in comprehensive monitoring during kick-killing and accurate control down-hole pressure. This paper have been pointed out the research direction of kick detection technology for offshore deep-water drilling, it has very important practical significance. |
DOI | 10.48014/cpngr.20241223001 |
文章类型 | 研究性论文 |
收稿日期 | 2024-12-23 |
接收日期 | 2025-01-06 |
出版日期 | 2025-03-28 |
关键词 | 深水钻井, 井控, 溢流, 气侵, 压井, 监测 |
Keywords | Deep-water drilling, well control, kick, gas cut, kick-killing, survey |
作者 | 丛军勇, 李晓东* |
Author | CONG Junyong, LI Xiaodong* |
所在单位 | 中海油田服务股份有限公司, 廊坊 065000 |
Company | China Oilfield Services Limited, Langfang 065000, China |
浏览量 | 74 |
下载量 | 22 |
参考文献 | [1] Chen W. Status and challenges of Chinese deepwater oil and gas development[J]. Petroleum Science, 2011, 8(4): 477-484. https://doi.org/10.1007/s12182-011-0171-8 [2] 张功成, 屈红军, 张凤廉, 等. 全球深水油气重大新发现及启示[J]. 石油学报, 2019, 40(1): 1-34. https://doi.org/10.7623/syxb201901001 [3] 刘嘉, 张焕芝, 杨金华, 等. 全球油气勘探开发形势及技术发展趋势[J]. 世界石油工业, 2019, 26(6): 6-11. [4] 刘书杰, 谢仁军, 仝刚, 等. 中国海洋石油集团有限公司深水钻完井技术进展及展望[J]. 石油学报, 2019, 40(S2): 168-173. https://doi.org/10.7623/syxb2019S2017 [5] 杨金华. 全球深水钻井现状与前景[J]. 石油科技论坛, 2014, 33(1): 1-6. https://doi.org/10.3969/j.issn.1002-302x.2014.01.010 [6] 李中, 谢仁军, 吴怡, 等. 中国海洋油气钻完井技术的进展与展望[J]. 天然气工业, 2021, 41(8): 178-185. https://doi.org/10.3787/j.issn.1000-0976.2021.08.016 [7] 王友华, 王文海, 蒋兴迅. 南海深水钻井作业面临的挑战和对策[J]. 石油钻探技术, 2011, 39(2): 50-54. https://doi.org/10.3969/j.issn.1001-0890.2011.02.009 [8] 李中. 南海高温高压气田开发钻完井关键技术现状及展望[J]. 石油钻采工艺, 2016, 38(6): 730-736. https://doi.org/10.13639/j.odpt.2016.06.003 [9] 陈彬, 罗俊丰, 叶吉华, 等. 深水井控成功实践与技术分析[J]. 石油钻采工艺, 2015, 37(1): 129-131. https://doi.org/10.13639/j.odpt.2015.01.033 [10] 陈平, 马天寿. 深水钻井溢流早期监测技术研究现状[J]. 石油学报, 2014, 35(3): 602-612. https://doi.org/10.7623/syxb201403025 [11] 许玉强, 金衍, 管志川, 等. 深水钻井气侵溢流发展规律及隔水管气侵监测优势[J]. 中国石油大学学报(自然科学版), 2019, 43(1): 60-67. https://doi.org/10.3969/j.issn.1673-5005.2019.01.007 [12] 范翔宇, 帅竣天, 李枝林, 等. 油气井早期溢流监测技术研究现状及展望[J]. 钻采工艺, 2020, 43(3): 23-26. https://doi.org/10.3969/J.ISSN.1006-768X.2020.03.08 [13] 卓鲁斌, 葛云华, 汪海阁. 深水钻井早期井涌检测方法及未来趋势[J]. 石油钻采工艺, 2009, 31(1): 22-26. https://doi.org/10.3969/j.issn.1000-7393.2009.01.007 [14] 张晓东, 王海娟. 深水钻井技术进展与展望[J]. 天然气工业, 2010, 30(9): 1-4. https://doi.org/10.3787/j.issn.1000-0976.2010.09.012 [15] 殷志明, 盛磊祥, 蒋世全, 等. 深水多梯度钻井方法及仿真分析[J]. 天然气工业, 2012, 32(11): 64-67. https://doi.org/10.3787/j.issn.1000-0976.2012.11.015 [16] 叶吉华, 刘正礼, 罗俊丰, 等. 南海深水钻井井控技术难点及应对措施[J]. 石油钻采工艺, 2015, 37(1): 139-142. https://doi.org/10.13639/j.odpt.2015.01.036 [17] 申屠俊杰, 林伯韬, 陆吉. 深水浅层浅水流灾害风险评价与防灾方法研究[J]. 石油科学通报, 2021, 6(3): 451-464. https://doi.org/10.3969/j.issn.2096-1693.2021.03.036 [18] 孙金声, 廖波, 王金堂, 等. 分子模拟技术在天然气水合物相变机理方面的研究进展及应用[J]. 中南大学学报(自然科学版), 2022, 53(3): 757-771. https://doi.org/10.11817/j.issn.1672-7207.2022.03.001 [19] 伍贤柱, 胡旭光, 韩烈祥, 等. 井控技术研究进展与展望[J]. 天然气工业, 2022, 42(2): 133-142. https://doi.org/10.3787/j.issn.1000-0976.2022.02.014 [20] 葛亮, 黄凯强, 田贵云, 等. 基于电磁检测机理的井下环空流量测量方法研究[J]. 仪器仪表学报, 2019, 40(12): 161-174. https://doi.org/10.19650/j.cnki.cjsi.J1905700 [21] 唐弢, 马天寿, 陈平, 等. 井下微流量测量装置节流压差规律研究[J]. 石油机械, 2019, 47(3): 1-6. https://doi.org/10.16082/j.cnki.issn.1001-4578.2019.03.001 [22] 朱焕刚, 王树江, 李宗清, 等. 早期溢流及漏失的新型及时高精度监测计量系统[J]. 天然气工业, 2018, 38(12): 102-106. https://doi.org/10.3787/j.issn.1000-0976.2018.12.012 [23] 王健, 陈颖, 张军阳, 等. 钻井液循环系统减缓液面波动装置研发与应用[J]. 石油钻探技术, 2017, 45(5): 48-52. https://doi.org/10.11911/syztjs.201705009 [24] 冯光通. 气井钻井溢流早期监测技术[J]. 广西大学学报(自然科学版), 2016, 41(1): 291-300. https://doi.org/10.13624/j.cnki.issn.1001-7445.2016.0291 [25] 李基伟, 柳贡慧, 李军. 双梯度钻井U型管效应溢流监测方法研究[J]. 钻采工艺, 2016, 39(1): 19-22. https://doi.org/10.3969/J.ISSN.1006-768X.2016.01.06 [26] 关玉新. 加强井涌监测预报实现井控安全[J]. 录井工程, 2010, 21(3): 35-38. https://doi.org/10.3969/j.issn.1672-9803.2010.03.009 [27] 王江帅, 李军, 柳贡慧, 等. 气侵条件下新型双梯度钻井环空出口流量变化规律研究[J]. 石油钻探技术, 2020, 48(4): 43-49. https://doi.org/10.11911/syztjs.2020043 [28] 张锐尧, 李军, 柳贡慧, 等. 基于空心球滑移条件下的双梯度钻井井筒温压场的研究[J]. 石油科学通报, 2021, 6(3): 429-440. https://doi.org/10.3969/j.issn.2096-1693.2021.03.034 [29] 姜清兆, 王英胜, 毛敏, 等. 基于科里奥利质量流量计的早期井涌探测系统[J]. 石油天然气学报, 2013, 35(4): 158-160. https://doi.org/10.3969/j.issn.1000-9752.2013.04.036 [30] 屈俊波, 陈平, 马天寿, 等. 精确监测井底溢流的井下微流量装置设计与试验[J]. 石油钻探技术, 2012, 40(5): 106-110. https://doi.org/10.3969/j.issn.1001-0890.2012.05.023 [31] 刘飞, 付建红, 张智, 等. 超声波在钻井液中传播衰减理论研究[J]. 石油钻采工艺, 2012, 34(1): 57-59. https://doi.org/10.3969/j.issn.1000-7393.2012.01.016 [32] 卓鲁斌, 葛云华, 张富成, 等. 碳酸盐岩油气藏气侵早期识别技术[J]. 石油学报, 2012, 33(S2): 174-180. https://doi.org/10.7623/syxb2012S2018 [33] 石磊, 陈平, 胡泽, 等. 井下微流量控制方法[J]. 天然气工业, 2011, 31(02): 79-81. https://doi.org/10.3787/j.issn.1000-0976.2011.02.019 [34] 李相方, 管丛笑, 隋秀香, 等. 压力波气侵检测理论及应用[J]. 石油学报, 1997, 18(3): 128-138. https://doi.org/10.7623/syxb199703021 [35] Swanson BW, Gardner AG, Brown NP, et al. Slimholeearly kick detection by real-time drilling analysis[J]. SPE Drilling & Completion, 1997, 12(1): 27-32. https://doi.org/10.2118/25708-PA [36] Hargreaves D, Jardine S, Jeffryes B. Early kick detectionfor deepwater drilling: New probabilistic methodsapplied in the field[C]. SPE Annual Technical Conferenceand Exhibition, September 30-October 3, 2001, New Orleans, Louisian. https://doi.org/10.2118/71369-MS [37] Fraser D, Lindley R, Moore D, et al. Early kick detectionmethods and technologies[C]. SPE Annual TechnicalConference and Exhibition, October 27-29, 2014, Amsterdam, The Netherlands. https://doi.org/10.2118/170756-MS [38] Vajargah AK, van Oort E. Early kick detection andwell control decision-making for managed pressuredrilling automation[J]. Journal of Natural Gas Scienceand Engineering, 2015, 27: 354-66. https://doi.org/10.1016/j.jngse.2015.08.067 [39] Nayeem AA, Venkatesan R, Khan F. Monitoring ofdown-hole parameters for early kick detection[J]. Journal of Loss Prevention in the Process Industries, 2016, 40: 43-54. https://doi.org/10.1016/j.jlp.2015.11.025 [40] Fu J, Su Y, Jiang W, et al. Development and testing ofkick detection system at mud line in deepwater drilling[J]. Journal of Petroleum Science and Engineering, 2015, 135: 452-60. https://doi.org/10.1016/j.petrol.2015.10.013 [41] Huque MM, Imtiaz S, Rahman A, et al. Kick detectionand remedial action in managed pressure drilling: A review[J]. SN Applied Sciences. 2020, 2(7): 1-29. https://doi.org/10.1007/s42452-020-2962-2 [42] Yang H, Li J, Liu G, et al. A new method for early gaskick detection based on the consistencies and differencesof bottomhole pressures at two measured points[J]. Journal of Petroleum Science and Engineering, 2019, 176: 1095-105. https://doi.org/10.1016/j.petrol.2019.02.026 [43] Nhat DM, Venkatesan R, Khan F. Data-driven Bayesiannetwork model for early kick detection in industrialdrilling process[J]. Process Safety and EnvironmentalProtection, 2020, 138: 130-138. https://doi.org/10.1016/j.psep.2020.03.017 [44] Muojeke S, Venkatesan R, Khan F. Supervised datadrivenapproach to early kick detection during drillingoperation[J]. Journal of Petroleum Science and Engineering, 2020, 192: 107324. https://doi.org/10.1016/j.petrol.2020.107324 [45] Sleiti AK, Takalkar G, El-Naas MH, et al. Early gaskick detection in vertical wells via transient multiphaseflow modelling: A review[J]. Journal of Natural GasScience and Engineering, 2020, 80: 103391. https://doi.org/10.1016/j.jngse.2020.103391 [46] Jacobs T. Early kick detection: Testing new concepts[J]. Journal of Petroleum Technology, 2015, 67(8): 44-9. https://doi.org/10.2118/0815-0044-JPT [47] Choe J, Schubert J, Juvkam-Wold H. Analyses and proceduresfor kick detection in subsea mudlift drilling[J]. SPEDrilling & Completion, 2007, 22(4): 296-303. https://doi.org/10.2118/87114-PA [48] Bang J, Mjaaland S, Jensen L K, et al. Acoustic gaskickdetection with wellhead sonar[J]. Journal of PetroleumTechnology, 1995, 47(2): 111-112. https://doi.org/10.2118/28317-MS [49] Greenberg J. Weatherford sensors track vibration to increaseROP, temperature change for early kick detection[J]. Drilling Contractor, 2008, 64(2): 46-47. [50] Long R, Veeningen D. Networked drill pipe offers along-string pressure evaluation in real time[J]. WorldOil, 2011: 232(9): 91-94. [51] Osarogiagbon A, Muojeke S, Venkatesan R, et al. Anew methodology for kick detection during petroleumdrilling using long short-term memory recurrent neuralnetwork[J]. Process Safety and Environmental Protection, 2020, 142: 126-37. https://doi.org/10.1016/j.psep.2020.05.046 [52] Brakel JD, Tarr BA, Cox W, et al. SMART kick detection: First step on the well-control automation journey[J]. SPE Drilling & Completion, 2015, 30(3): 233-42. https://doi.org/10.2118/173052-PA [53] Tarr BA, Ladendorf DW, Sanchez D, et al. Next-generationkick detection during connections: influx detectionat pumps stop(IDAPS)software[J]. SPE Drilling &Completion, 2016, 31(4): 250-60. https://doi.org/10.2118/178821-PA [54] Kamyab M, Shadizadeh S, Jazayeri-rad H, et al. Earlykick detection using real time data analysis with dynamicneural network: A case study in Iranian oil fields[C]. Nigeria Annual International Conference and Exhibition, July 31-August 7, 2010, Tinapa-Calabar, Nigeria. https://doi.org/10.2118/136995-MS [55] 戴永寿, 岳炜杰, 孙伟峰, 等. “三高”油气井早期溢流在线监测与预警系统[J]. 中国石油大学学报(自然科学版), 2015, 39(3): 188-194. https://doi.org/10.3969/j.issn.1673-5005.2015.03.027 [56] 袁俊亮, 范白涛, 幸雪松, 等. 基于朴素贝叶斯算法的钻井溢流实时预警研究[J]. 石油钻采工艺, 2021, 43(4): 455-460. https://doi.org/10.13639/j.odpt.2021.04.007 [57] 李中. 中国海油油气井工程数字化和智能化新进展与展望[J]. 石油钻探技术, 2022, 50(2): 1-8. https://doi.org/10.11911/syztjs.2022061 [58] 李根生, 宋先知, 田守嶒. 智能钻井技术研究现状及发展趋势[J]. 石油钻探技术, 2020, 48(1): 1-8. https://doi.org/10.11911/syztjs.2020001. [59] 逄铭玉, 李勇, 傅建斌, 等. 基于专利信息的钻井早期溢流监测技术趋势分析[J]. 安全、健康和环境, 2022, 22(4): 5-10. https://doi.org/10.3969/j.issn.1672-7932.2022.04.002. |
引用本文 | 丛军勇, 李晓东. 海洋深水钻井早期溢流综合监测技术研究[J]. 中国石油天然气研究, 2025, 4(1): 1-9. |
Citation | CONG Junyong, LI Xiaodong. Integrated technology of early kick detection for offshore deep-water drilling[J]. Chinese Petroleum and Natural Gas Research, 2025, 4(1): 1-9. |