2025年5月24日 星期六
长江中游城市群县域住宅地价空间关联特征及其影响因素研究
Study on the Spatial Correlation Characteristics of Residential Land Prices in Counties of the Urban Agglomeration in the Middle Reaches of the Yangtze River and Their Influencing Factors
摘要

住宅地价对调控地方经济发展, 优化城市国土空间布局的作用日益凸显。本文以2017年长江中游城市群229个县 (市、区) 的住宅地价为研究对象, 基于均衡价格和区域经济理论, 建立县域住宅地价的影响因素理论模型; 运用空间自相关分析、空间滞后模型等方法对研究区住宅地价空间分布特征及影响因素进行探究。研究结果表明: (1) 长江中游城市群内不同县域住宅地价总体差异显著, 住宅地价水平由低到高整体呈现“金字塔”型分布。 (2) 城市群内县域住宅地价空间分布格局受区位条件和上级市行政等级影响较大。住宅地价在东西方向上呈现倒“U”型分布, 东部整体高于西部; 南北方向上由北向南呈现逐渐下降的趋势。 (3) 研究区县域住宅地价全局莫兰指数为0. 603, 整体存在显著的空间正相关和集聚现象, 在局部上的空间集聚特征明显。 (4) 长江中游城市群县域住宅地价间存在显著正向溢出效应, 研究区县域住宅地价同时受到土地供需因素和政策制度、政府调控能力的强烈影响。相关结论可为城市群通过地价调控优化城市资源配置, 缩小区域发展差距, 促进区域一体化发展提供参考。

Abstract

The role of residential land price in regulating local economic development and optimizing urban land spatial layout is becoming more and more prominent. This paper takes the residential land price of 229 counties (districts, cities) of urban agglomeration in the middle reaches of the Yangtze River in 2017 as the research object, and establishes a theoretical model of the influencing factors of county residential land price based on equilibrium price and regional economic theory; and uses methods of spatial autocorrelation analysis and spatial lag model to explore the spatial distribution characteristics and influencing factors of residential land price in the research area and the influencing factors. The research results indicate that: (1) There are significant overall differences in residential land price among different counties within the urban agglomeration in the middle reaches of the Yangtze River, and the overall distribution of residential land price shows a "pyramid" pattern from low to high. (2) The spatial distribution pattern of residential land price in counties within urban agglomerations is greatly influenced by the location conditions and the administrative level of higher-level cities. The residential land price shows an inverted "U" distribution in the east-west direction, with the eastern part being higher than the western part as a whole; There is a gradual downward trend from north to south in the north-south direction. (3) The Global Moran’s I of residential land prices in the research area is 0. 603, with a significant spatial positive correlation and agglomeration phenomenon. and the obvious local spatial agglomeration characteristics. (4) There is a significant positive spillover effect between county-level residential land price in the urban agglomeration of the middle reaches of the Yangtze River. The residential land price in the study area is strongly influenced by both land supply and demand factors, policy systems, and government regulatory capabilities. The relevant conclusions can provide reference for urban agglomeration to optimize urban resource allocation through land price regulation, narrow regional development gaps, and promote the integrated development of the region.  

DOI10.48014/fdg.20231115001
文章类型研究性论文
收稿日期2023-11-15
接收日期2023-12-26
出版日期2023-12-28
关键词长江中游城市群, 住宅地价, 影响因素, 空间滞后模型, 空间特征
KeywordsUrban Agglomeration in the middle reaches of the Yangtze River, residential land price, impact factor, spatial lag model, spatial characteristics
作者任锦铭1,*, 曾晨2, 吴宇哲1
AuthorREN Jinming1,*, ZENG Chen2, WU Yuzhe1
所在单位1. 浙江大学公共管理学院, 杭州 310058
2. 华中农业大学公共管理学院, 武汉 430070
Company1. School of Public Affairs, Zhejiang University, Hangzhou 310058, China
2. College of Public Administration, Huazhong Agriculture University, Wuhan 430070, China
浏览量458
下载量144
基金项目国家自然科学基金项目(42171262);华中农业大学自主创新基金项目(2662021JC002)
参考文献[1] 邓孟桠. 城市群协同发展视角下地价对产业结构升级的影响机制研究[D]. 北京: 北京建筑大学, 2020.
https://doi.org/10.26943/d.cnki.gbjzc.2020.000168
[2] Dubin RA. Spatial autocorrelation and neighborhood quality[J]. Reg Sci Urban Econ, 1992, 22(3): 433-452.
https://doi.org/10.1016/0166-0462(92)90038-3
[3] 高姝, 刘纪平, 郭文华, 等. 北京市房地产价格空间分布变化研究[J]. 测绘科学, 2021, 46(09): 150-156.
https://doi.org/10.16251/j.cnki.1009-2307.2021.09.020
[4] 杨奎奇, 史春云, 汪应宏. 中国典型城市群住宅地价空间特征研究[J]. 经济地理, 2013, 33(06): 135-141.
https://doi.org/10.15957/j.cnki.jjdl.2013.06.007
[5] 莫悦, 刘洋, 朱丽芳. 长江经济带城市土地价格空间分异特征及其影响因素[J]. 长江流域资源与环境, 2020, 29(01): 13-22.
https://doi.org/10.11870/cjlyzyyhj202001002
[6] 官洋溢, 梁彦庆, 黄志英, 等. 河北省县域住宅地价时空关联特征及溢出效应分析[J]. 地理与地理信息科学, 2020, 36(06): 90-97.
https://doi.org/10.3969/j.issn.1672-0504.2020.06.014
[7] Manning C A. The Determinants of Intercity Home Building Site Price Differences[J]. Land Economics, 1988, 64(1): 1-14.
[8] Agbato S E, Adetokunboh O O, Sodiya A K. Land Pricing Influencing Factors: Perception of Estate Surveyors and Property Developers[C]. 18th African Real Estate Society, 2018, Abeokuta, Ogun State, Nigeria.
[9] Hammer T R, Coughlin R E, Horn E T. The Effect of a Large Urban Park on Real Estate Value[J]. Journal of the American Institute of Planners, 1974, 40(4): 274-277.
https://doi.org/10.1080/01944367408977479
[10] Ahlfeldt G M, Maennig W. Impact of sports arenas on land values: evidence from Berlin[J]. The Annals of Reginal Science, 2010, 44(2): 205-227.
https://doi.org/10.1007/s00168-008-0249-4
[11] Lee Y S. School districting and the origins of residential land price inequality[J]. Journal of Housing Economics, 2015, 28(6. ): 1-17.
https://doi.org/10.1016/j.jhe.2014.12.002
[12] 董黎明, 冯长春. 城市土地综合经济评价的理论方法初探[J]. 地理学报, 1989(03): 323-333.
https://doi.org/10.11821/xb198903008
[13] 杨继瑞. 影响城市地价的因素体系探析[J]. 城市规划汇刊, 1994(05): 14-20+61.
[14] 常疆, 廖秋芳, 王良健. 长沙市区地价的空间分布特征及其影响因素[J]. 地理研究, 2011, 30(10): 1901-1909.
https://doi.org/10.11821/yj2011100016
[15] 钟义鹏, 赵小敏, 郭熙, 等. 南昌市中心城区住宅地价空间分布格局及其影响因素[J]. 江西农业大学学报, 2020, 42(06): 1292-1302.
https://doi.org/10.13836/j.jjau.2020144
[16] 瞿诗进, 胡守庚, 李全峰, 等. 城市住宅地价影响因素的定量识别与时空异质性———以武汉市为例[J]. 地理科学进展, 2018, 37(10): 1371-1380.
https://doi.org/10.18306/dlkxjz.2018.10.007
[17] 隋雪艳, 吴巍, 周生路, 等. 都市新区住宅地价空间异质性驱动因素研究———基于空间扩展模型和GWR模型的对比[J]. 地理科学, 2015, 35(06): 683-689.
https://doi.org/10.13249/j.cnki.sgs.2015.06.003
[18] 李琴, 任福, 张玉茜, 等. 深圳市住宅用地价格影响因素空间差异化规律分析[J]. 地理信息世界, 2017, 24(01): 37-44.
https://doi.org/10.3969/j.issn.1672-1586.2017.01.008
[19] 李佳蔚. 北京市住宅地价空间分异特点及影响因素研究[D]. 北京: 首都经济贸易大学, 2018.
[20] 黄少骞, 王红庆, 郭燕. 城市间地价差异性影响因素分析[J]. 山西师范大学学报(自然科学版), 2018, 32(03): 65-73.
https://doi.org/10.16207/j.cnki.1009-4490.2018.03.013
[21] 董文. 成渝城市群县域住宅地价时空演变及影响因素研究[D]. 成都: 四川师范大学, 2018.
[22] 赵莉, 葛京凤. 基于引力模型的区域城市地价研究———以京津冀都市圈区域为例[J]. 中国土地科学, 2013, 27(12): 52-58.
https://doi.org/10.3969/j.issn.1001-8158.2013.12.009
[23] 李晓进, 李灿, 葛京凤, 等. 河北省地价影响因素差异性研究[J]. 地域研究与开发, 2017, 36(03): 129-135.
[24] 华文, 范黎, 吴群, 等. 城市地价水平影响因素的相关分析———以江苏省为例[J]. 经济地理, 2005(02): 203-205+218.
https://doi.org/10.3969/j.issn.1000-8462.2005.02.015
[25] 朱传广, 唐焱, 吴群. 基于Hedonic模型的城市住宅地价影响因素研究———以南京市为例[J]. 地域研究与开发, 2014, 33(03): 156-160.
https://doi.org/10.3969/j.issn.1003-2363.2014.03.031
[26] 宋佳楠, 金晓斌, 唐健, 等. 中国城市地价水平及变化影响因素分析[J]. 地理学报, 2011, 66(08): 1045-1054.
[27] 李志, 周生路, 张红富, 等. 基于GWR 模型的南京市住宅地价影响因素及其边际价格作用研究[J]. 中国土地科学, 2009, 23(10): 20-25.
https://doi.org/10.3969/j.issn.1001-8158.2009.10.004
[28] 张静, 张丽芳, 濮励杰, 等. 基于GWR 模型的城市住宅地价的时空演变研究———以江苏省为例[J]. 地理科学, 2012, 32(07): 828-834.
https://doi.org/10.13249/j.cnki.sgs.2012.07.008
[29] 沈昊婧, 冯长春, 侯懿珊. 城市间土地价格及影响因素的空间差异研究[J]. 城市发展研究, 2014, 21(03): 4-8.
https://doi.org/10.3969/j.issn.1006-3862.2014.03.021
[30] 单玉红, 聂俊成. 基于GWR 模型的武汉市住宅地价影响因素研究[J]. 华中农业大学学报(社会科学版), 2014(05): 111-118.
https://doi.org/10.13300/j.cnki.hnwkxb.2014.05.036
[31] 崔晓美, 葛京凤, 刘雅楠, 等. 城市群土地价格影响因素差异性研究[J]. 现代城市研究, 2017(06): 106-112.
https://doi.org/10.3969/j.issn.1009-6000.2017.06.015
[32] 邓苏玲, 欧国良. 基于空间杜宾模型的住房价格影响因素分析———来自105个城市的经验数据[J]. 中国房地产, 2021(09): 16-25.
https://doi.org/10.13562/j.china.real.estate.2021.09.003
[33] 崔友平. 价值理论述评与研究的深化[J]. 山东财政学院学报, 2002(02): 40-43+84.
https://doi.org/10.3969/j.issn.1008-2670.2002.02.010
[34] 杨新荣. 劳动价值论与均衡价格理论之比较研究[J]. 学术交流, 2002(05): 79-83.
https://doi.org/10.3969/j.issn.1000-8284.2002.05.021
[35] 安虎森. 区域经济学的一些理论问题[J]. 河北经贸大学学报, 2022, 43(01): 11-19.
https://doi.org/10.14178/j.cnki.issn1007-2101.20220106.001
[36] 许锋. 基于Moran指数和谱图论的空间自相关测度方法优化[J]. 城市发展研究, 2021, 28(12): 92-101+41.
https://doi.org/10.3969/j.issn.1006-3862.2021.12.020
[37] Cliff A D, Ord J K. Spatial Autocorrelation[M]. London: pion, 1973.
[38] Anselin L, Bera A K, Florax R, et al. Simple diagnostictests for spatial dependence[J]. Reginal Science andUrban Economics. 1996, 26(1): 77-104.
https://doi.org/10.1016/0166-0462(95)02111-6
[39] Anselin L, Varga A, Acs Z. Local Geographic Spilloversbetween University Research and High Technology Innovations[J]. Journal of Urban Economics, 1997, 42(3): 422-448.
https://doi.org/10.1006/JUEC.1997.2032
[40] 张航, 范子英. 房产税能否抑制住房投机[J]. 世界经济, 2021, 44(09): 154-179.
https://doi.org/10.19985/j.cnki.cassjwe.2021.09.008
[41] 徐小华, 徐志豪, 胡先伟. 差别化信贷政策的房价“稳定器”效果研究[J]. 南方经济, 2019(05): 17-36.
https://doi.org/10.19592/j.cnki.scje.360073
[42] 王艺晓, 孙斌栋, 郑涛. 城际交通联系对城市住宅地价差距的影响研究———以中国巨型城市区域为例[J]. 城市问题, 2023(07): 62-72.
https://doi.org/10.13239/j.bjsshkxy.cswt.230707
[43] 张安伟, 胡艳. 多中心空间结构与创新价值链效率: 影响效应及作用机制[J/OL]. 科技进步与对策, 1-12[2024-01-26].
http://kns.cnki.net/kcms/detail/42.1224.G3.20231130.1305.006.html
引用本文任锦铭, 曾晨, 吴宇哲. 长江中游城市群县域住宅地价空间关联特征及其影响因素研究[J]. 发展地理学前沿, 2023, 2(4): 38-52.
CitationREN Jinming, ZENG Chen, WU Yuzhe. Study on the spatial correlation characteristics of residen-tial land prices in counties of the urban agglomeration in the middle reaches of the Yangtze River and their influencing factors[J]. Frontiers of Development Geography, 2023, 2(4): 38-52.