参考文献
[1] Mehta P K. Durability-Critical Issues for the Future[J]. Concrete international, 1997, 19: 27-33. [2] 王欣悦, 丁思齐, 董素芬, 等. 混凝土可持续发展: 应对碳排放引起气候变化危机[J]. 工程材料与结构, 2022, 1(1): 1-14. https://doi.org/:10.48014/ems.20220728001 [3] Singh J K, Singh D D N. The nature of rusts and corrosion characteristics of low alloy and plain carbon steels in three kinds of concrete pore solution with salinity and different pH[J]. Corrosion Science, 2012, 56: 129-142. https://doi.org/10.1016/j.corsci.2011.11.012 [4] Basheer P A M, Andrews R J, Robinson D J, et al. ‘PERMIT’ ion migration test for measuring the chloride ion transport of concrete on site[J]. NDT & E International, 2005, 38(3): 219-229. https://doi.org/10.1016/j.ndteint.2004.06.013 [5] 混凝土结构设计规范(GB 50010-2010)[J]. 建设科技, 2015(10): 28-30. [6] Mehta P K, Monteiro P J M. Concrete: Microstructure, Properties, and Materials[C]. 2005. https://doi.org/10.2478/amm-2014-0285 [7] Tang L, Nilsson L, Basheer P A M. Resistance of Concrete to Chloride Ingress: Testing and modelling[M]. 2011. https://doi.org/10.1201/b12603 [8] Barton G. The Mathematics of Diffusion 2nd edn [J]. Physics Bulletin, 1975, 26: 500-501. [9] Yang Y, Patel R A, Churakov S V, et al. Multiscale modeling of ion diffusion in cement paste: electrical double layer effects[J]. Cement and Concrete Composites, 2019, 96: 55-65. https://doi.org/10.1016/j.cemconcomp.2018.11.008 [10] Andrade C. Calculation of chloride diffusion coefficients in concrete from ionic migration measurements[J]. Cement and Concrete Research, 1993, 23(3): 724-742. https://doi.org/10.1016/0008-8846(93)90023-3 [11] Basford J R. The Law of Laplace and its relevance to contemporary medicine and rehabilitation[J]. Archives of physical medicine and rehabilitation, 2002, 83 8: 1165-1170. https://doi.org/10.1053/apmr.2002.33985 [12] Martín Pérez B, Pantazopoulou S J, Thomas M D A. Numerical solution of mass transport equations in concrete structures[J]. Computers & Structures, 2001, 79: 1251-1264. https://doi.org/10.1016/S0045-7949(01)00018-9 [13] Haque M N, Kayyali O A. Free and water soluble chloride in concrete[J]. Cement and Concrete Research, 1995, 25(3): 531-542. https://doi.org/10.1016/0008-8846(95)00042-B [14] Shi Z, Geiker M R, Lothenbach B, et al. Friedels salt profiles from thermogravimetric analysis and thermodynamic modelling of Portland cement-based mortars exposed to sodium chloride solution[J]. Cement and Concrete Composites, 2017, 78: 73-83. https://doi.org/10.1016/j.cemconcomp.2017.01.002 [15] Paul G, Boccaleri E, Buzzi L, et al. Friedel's salt formation in sulfoaluminate cements: A combined XRD and 27Al MAS NMR study[J]. Cement and Concrete Research, 2015, 67: 93-102. https://doi.org/10.1016/j.cemconres.2014.08.004 [16] Midgley H G, Illston J M. The penetration of chlorides into hanrdened cement pastes[J]. Cement and Concrete Research, 1984, 14: 546-558. https://doi.org/10.1016/0008-8846(84)90132-7 [17] Glasser F P. Role of chemical binding in diffusion and mass transport[J]. 2001, 25: 129-154. [18] Hewlett P C, Lea F M. Lea's chemistry of cement and concrete[M]. 2001. https://doi.org/10.1016/B978-0-7506-6256-7.X5007-3 [19] Chen Y, Shui Z, Chen W, et al. Chloride binding of synthetic Ca-Al-NO3 LDHs in hardened cement paste[J]. Construction and Building Materials, 2015, 93: 1051-1058. https://doi.org/10.1016/j.conbuildmat.2015.05.047 [20] Yang Z, Gao Y, Mu S, et al. Improving the chloride binding capacity of cement paste by adding nano-Al2O3[J]. Construction and Building Materials, 2019, 195: 415-422. https://doi.org/10.1016/j.conbuildmat.2018.11.012 [21] Ekolu S O, Thomas M D A, Hooton R D. Pessimum effect of externally applied chlorides on expansion due to delayed ettringite formation: Proposed mechanism[J]. Cement and Concrete Research, 2006, 36(4): 688-696. https://doi.org/10.1016/j.cemconres.2005.11.020 [22] Mehta P K. Effect of Cement Composition on Corrosion of Reinforcing Steel in Concrete[J]. ASTM special technical publications, 1977. https://doi.org/10.1520/STP27949S [23] Florea M V A, Brouwers H J H. Chloride binding related to hydration products: Part I: Ordinary Portland Cement[J]. Cement and Concrete Research, 2012, 42(2): 282-290. https://doi.org/10.1016/j.cemconres.2011.09.016 [24] Li C, Jiang L, Xu N, et al. Pore structure and permeability of concrete with high volume of limestone powder addition[J]. Powder Technology, 2018, 338: 416-424. https://doi.org/10.1016/j.powtec.2018.07.054 [25] Suryavanshi A K, Swamy R N. Stability of Friedels salt in carbonated concrete structural elements[J]. Cement and Concrete Research, 1996, 26(5): 729-741. https://doi.org/10.1016/S0008-8846(96)85010-1 [26] Ye H, Jin X, Chen W, et al. Prediction of chloride binding isotherms for blended cements[J]. Computers and Concrete, 2016, 17(5): 665-682. https://doi.org/10.12989/cac.2016.17.5.655 [27] Thomas M D A, Hooton R D, Scott A, et al. The effect of supplementary cementitious materials on chloride binding in hardened cement paste[J]. Cement and Concrete Research, 2012, 42(1): 1-7. https://doi.org/10.1016/j.cemconres.2011.01.001 [28] Diamond S. Chloride concentrations in concrete pore solutions resulting from calcium and sodium chloride admixtures[J]. Cement, Concrete and Aggregates, 1986, 8(2): 97-102. https://doi.org/10.1520/CCA10062J [29] Luping T, Nilsson L. Chloride binding capacity and binding isotherms of OPC pastes and mortars[J]. Cement and Concrete Research, 1993, 23(2): 247-253. https://doi.org/10.1016/0008-8846(93)90089-R [30] Hirao H, Yamada K, Takahashi H, et al. Chloride binding of cement estimated by binding isotherms of hydrates[J]. Journal of Advanced Concrete Technology, 2005, 3(1): 77-84. https://doi.org/10.3151/jact.3.77 [31] Birnin-Yauri U A, Glasser F P. Friedel’s salt, Ca2·Al(OH)6(Cl, OH)·2H2O: its solid solutions and their role in chloride binding[J]. Cement and Concrete Research, 1998, 28: 1713-1723. https://doi.org/10.1016/S0008-8846(98)00162-8 [32] Elakneswaran Y, Nawa T, Kurumisawa K. Electrokinetic potential of hydrated cement in relation to adsorption of chlorides[J]. Cement and Concrete Research, 2009, 39(4): 340-344. https://doi.org/10.1016/j.cemconres.2009.01.006 [33] Rasheeduzzafar. Influence of cement composition on concrete durability[J]. Materials, 1992, 89: 574-586. https://doi.org/10.1016/0043-1648(92)90296-K [34] Tuutti K. Analysis of pore solution squeezed out of cement paste and mortar[J]. Nordic concrete research, 1982. [35] Mohammed T U, Hamada H. Relationship between free chloride and total chloride contents in concrete[J]. Cement and Concrete Research, 2003, 33(9): 1487-1490. https://doi.org/10.1016/S0008-8846(03)00065-6 [36] Oh B H, Jang S Y. Effects of material and environmental parameters on chloride penetration profiles in concrete structures[J]. Cement and Concrete Research, 2007, 37(1): 47-53. https://doi.org/10.1016/j.cemconres.2006.09.005 [37] Ramachandran V S, Seeley R C, Polomark G M. Free and combined chloride in hydrating cemnet and cement components[J]. Materiaux et constructions, 1984, 17(100): 285-289. https://doi.org/10.1007/BF02479084 [38] Truc O. Prediction of chloride penetration into saturated concrete-multi-species approach[J]. Doktorsavhandlingar vid Chalmers Tekniska Hogskola, 2000(1617): 1-179. [39] Papadakis V G. Effect of supplementary cementing materials on concrete resistance against carbonation and chloride ingress[J]. Cement and Concrete Research, 2000, 30: 291-299. [40] Sergi G, Yu S W, Page C L. Diffusion of chloride and hydroxyl ions in cementitious materials exposed to a saline environment[J]. Magazine of Concrete Research, 1992, 44: 63-69. https://doi.org/10.1680/macr.1992.44.158.63 [41] Luping T. Chloride Transport in Concrete-Measurement and Prediction[C]. 1996. [42] Qiao C, Coyle A T, Isgor O B, et al. Prediction of Chloride Ingress in Saturated Concrete Using Formation Factor and Chloride Binding Isotherm[J]. Advances in Civil Engineering Materials, 2018, 7: 20170141. https://doi.org/10.1520/ACEM20170141 [43] Zibara H. Binding of external chlorides by cement pastes[C]. 2001. [44] 王绍东, 黄煜镔, 王智. 水泥组分对混凝土固化氯离子能力的影响[J]. 硅酸盐学报, 2000(06): 570-574. [45] Wang D, Zhang W, Ruan Y, et al. Enhancements and mechanisms of nanoparticles on wear resistance and chloride penetration resistance of reactive powder concrete[J]. Construction and Building Materials, 2018. https://doi.org/10.1016/j.conbuildmat.2018.09.041 [46] Mostafa S A, EL-Deeb M M, Farghali A A, et al. Evaluation of the nano silica and nano waste materials on the corrosion protection of high strength steel embedded in ultra-high performance concrete[J]. Scientific Reports, 2021, 11. https://doi.org/10.1038/s41598-021-82322-0 [47] 丁思齐, 王欣悦, 王佳亮, 等. 纳米工程化混凝土研究新进展[J]. 工程材料与结构, 2023, 2(4): 68-83. https://doi.org/10.48014/emc.20230807001 [48] 李祯, 孙梦月, 刘志强, 等. 用于可持续基础设施的高性能与多功能纳米氧化钛混凝土[J]. 工程材料与结构, 2023, 2(3): 30-63. https://doi.org/10.48014/ems.20230327001 [49] Li W, Wittmann F H, Jiang R, et al. Integral Water Repellent Concrete Produced by Addition of Metal Soaps[J]. Restoration of Buildings and Monuments, 2012, 18: 41-48. https://doi.org/10.1515/rbm-2012-6499 [50] Nazar S, Yang J, Thomas B S, et al. Rheological properties of cementitious composites with and without nanomaterials: A comprehensive review[J]. Journal of Cleaner Production, 2020, 272: 122701. https://doi.org/10.1016/j.jclepro.2020.122701 [51] Du Y, Yang J, Skariah Thomas B, et al. Influence of hybrid graphene oxide/carbon nanotubes on the mechanical properties and microstructure of magnesium potassium phosphate cement paste[J].Construction and Building Materials, 2020, 260: 120449. https://doi.org/10.1016/j.conbuildmat.2020.120449 [52] Du Y, Yang J, Skariah Thomas B, et al. Hybrid graphene oxide/carbon nanotubes reinforced cement paste: An investigation on hybrid ratio[J]. Construction and Building Materials, 2020, 261: 119815. https://doi.org/10.1016/j.conbuildmat.2020.119815 [53] Shaikh F, Supit S W M. Chloride induced corrosion durability of high volume fly ash concretes containing nano particles[J]. Construction and Building Materials, 2015, 99: 208-225. https://doi.org/10.1016/j.conbuildmat.2015.09.030 [54] 李永斌. 纳米SiO2 协同粉煤灰对混凝土性能的影响实验研究[J]. 粉煤灰综合利用, 2020, 34(03): 92-95. https://doi.org/10.3969/j.issn.1005-8249.2020.03.020 [55] 梅军帅, 吴静, 王罗新, 等. 纳米SiO2 改性的砂浆保护层对混凝土氯离子渗透性的影响[J]. 硅酸盐通报, 2018, 37(12): 3738-3743. [56] Mei J, Ma B, Huang A P J, et al. Effect of nano-TiO2 on chloride ingress in cementitious material[J]. ZKG International, 2017, 70(9): 60-67. [57] 韩林阳. 纳米水泥基复合材料耐磨性与抗氯离子渗透性[D]. 大连: 大连理工大学, 2018. [58] Jalal M, Fathi M, Farzad M. RETRACTED: Effects of fly ash and TiO2 nanoparticles on rheological, mechanical, microstructural and thermal properties of high strength self compacting concrete[J]. Mechanics of Materials, 2013, 61: 11-27. https://doi.org/10.1016/j.mechmat.2013.01.010 [59] Jalal M, Ramezanianpour A A, Pool M K. RETRACTED: Split tensile strength of binary blended self compacting concrete containing low volume fly ash and TiO2 nanoparticles[J]. Composites Part B: Engineering, 2013, 55: 324-337. https://doi.org/10.1016/j.compositesb.2023.110533 [60] Joshaghani A, Balapour M, Mashhadian M, et al. Effects of nano-TiO2, nano-Al2O3, and nano-Fe2O3 on rheology, mechanical and durability properties of self-consolidating concrete(SCC): An experimental study[J]. Construction and Building Materials, 2020, 245: 118444. https://doi.org/10.1016/j.conbuildmat.2020.118444 [61] Chinthakunta R, Ravella D P, Sri Rama Chand M, et al. Performance evaluation of self-compacting concrete containing fly ash, silica fume and nano titanium oxide[J]. Materials Today: Proceedings, 2021, 43: 2348-2354. https://doi.org/10.1016/j.matpr.2021.01.681 [62] Chunping G, Qiannan W, Jintao L, et al. The effect of nano-TiO2 on the durability of ultra-high performance concrete with and without a flexural load[J]. Ceramics- Silikaty, 2018, 62(4): 374-381. [63] Han B, Zhang L, Zeng S, et al. Nano-core effect in nanoengineeredcementitious composites [J]. CompositesPart A: Applied Science and Manufacturing, 2017, 95: 100-109. https://doi.org/10.1016/j.compositesa.2017.01.008 [64] 程马遥, 曾洋, 杨虹. 碳纳米管增强水泥基注浆材料的制备及其注浆性能研究[J]. 功能材料, 2020, 51(11): 11207-11213. https://doi.org/10.3969/j.issn.1001-9731.2020.11.031 [65] Carriço A, Bogas J A, Hawreen A, et al. Durability ofmulti-walled carbon nanotube reinforced concrete[J]. Construction and Building Materials, 2018, 164: 121-133. https://doi.org/10.1016/j.conbuildmat.2017.12.221 [66] Li W, Liu Y, Jiang Z, et al. Chloride-induced corrosionbehavior of reinforced cement mortar with MWCNTs[J]. Science and Engineering of Composite Materials, 2020, 27(1): 281-289. https://doi.org/10.1515/secm-2020-0029 [67] Wang T, Xu J, Meng B, et al. Experimental study on theeffect of carbon nanofiber content on the durability ofconcrete[J]. Construction and Building Materials, 2020, 250: 118891. https://doi.org/10.1016/j.conbuildmat.2020.118891 [68] 李相国, 明添, 刘卓霖. 碳纳米管水泥基复合材料耐久性及力学性能研究[J]. 硅酸盐通报, 2018, 37(05): 1497-1502. [69] Zhang W, Han B, Yu X, et al. Nano boron nitride modifiedreactive powder concrete[J]. Construction andBuilding Materials, 2018, 179: 186-197. https://doi.org/10.1016/j.conbuildmat.2018.05.244 [70] Arslan S, Öksüzer N, Gökçe H S. Improvement of mechanicaland transport properties of reactive powderconcrete using graphene nanoplatelet and waste glassaggregate[J]. Construction and Building Materials, 2022, 318: 126199. https://doi.org/10.1016/j.conbuildmat.2021.126199 [71] Chu H, Zhang Y, Wang F, et al. Effect of Graphene Oxideon Mechanical Properties and Durability of Ultra-High-Performance Concrete Prepared from RecycledSand[J]. Nanomaterials, 2020, 10. https://doi.org/10.3390/nano10091718 [72] Karim R, Najimi M, Shafei B. Assessment of transportproperties, volume stability, and frost resistance of nonproprietaryultra-high performance concrete[J]. Constructionand Building Materials, 2019, 227: 117031. https://doi.org/10.1016/j.conbuildmat.2019.117031 [73] Yu L, Wu R. Using graphene oxide to improve theproperties of ultra-high-performance concrete with finerecycled aggregate[J]. Construction and Building Materials, 2020, 259: 120657. https://doi.org/10.1016/j.conbuildmat.2020.120657 [74] Jung M S, Kim K B, Lee S A, et al. Risk of chloride-inducedcorrosion of steel in SF concrete exposed to achloride-bearing environment[J]. Construction andBuilding Materials, 2018, 166: 413-422. https://doi.org/10.1016/j.conbuildmat.2018.01.168 [75] Thomas M, Hooton R D, Scott A, et al. The effect ofsupplementary cementitious materials on chloride bindingin hardened cement paste[J]. Cement and ConcreteResearch, 2012, 42: 1-7. https://doi.org/10.1016/j.cemconres.2011.01.001 [76] Arya C, Buenfeld N R, Newman J B. Factors influencingchloride-binding in concrete[J]. Cement and ConcreteResearch, 1990, 20(2): 291-300. https://doi.org/10.1016/0008-8846(90)90083-A [77] Page C L, Vennesland Ø. Pore solution composition andchloride binding capacity of silica-fume cement pastes[J]. Matériaux et Construction, 1983, 16: 19-25. https://doi.org/10.1007/BF02474863 [78] Dhir R K, EL-MOHR M A K, Dyer T D. Developingchloride resisting concrete using PFA[J]. Cement andConcrete Research, 1997, 27: 1633-1639. https://doi.org/10.1016/S0008-8846(97)00146-4 [79] Wiens U, Schie P. Chloride binding of cement pastecontaining fly ash[C]. 1997. [80] Nagataki S, Otsuki N, Wee T H, et al. Condensation ofchloride ion in hanrdened cement matrix materials andon embedded steel bars[J]. ACI Materials Journal, 1993, 90: 323-332. https://doi.org/10.1016/0921-5093(93)90754-3