2024年5月17日 星期五
超高性能混凝土抗氯离子侵蚀综述
A Review of Chloride Corrosion Resistance of Ultra-High-Performance Concret
摘要

延长钢筋混凝土结构服役寿命可有效降低其全寿命周期的经济、环境、资源、能源成本。然而, 很多钢筋混凝土结构在环境作用下常由于氯离子侵蚀导致钢筋锈蚀, 从而导致性能劣化, 进而失去使用功能, 甚至发生安全事故。作为钢筋与外界环境之间的屏障, 保护层混凝土可有效阻碍氯离子接触钢筋表面, 保护钢筋不受氯离子侵害, 从而提高结构的耐久性。超高性能混凝土由于水胶比低并剔除了粗骨料, 具有致密的微观结构, 可极大程度地阻碍氯离子在其内部的传输, 从而有望大幅提升钢筋混凝土基础设施的服役寿命。基于此, 本文首先总结了氯离子在水泥基材料内部传输的基本机制, 包括水泥基内部氯离子的运动方式与物理化学结合机制, 并分析了超高性能混凝土的氯离子渗透与氯离子结合能力的研究现状与改善方法。

Abstract

Extending the service life of reinforced concrete structures can effectively reduce the economic, environmental, resource and energy costs throughout their life cycle. However, a large number of reinforced concrete structures often suffer from corrosion of reinforcing bars due to chloride ion erosion in various environments, which leads to deterioration of performance, the loss of functionality and even safety accidents. As a barrier between reinforcing steel and the external environment, protective layer concrete can effectively prevent chloride ions from contacting the surface of reinforcing steel, thus delaying the corrosion of reinforcing steel and improving the durability of reinforced concrete structures. Ultra-high-performance concrete has a dense microstructure due to its low water-to-cement ratio and elimination of coarse aggregates, which can greatly impede the transport of chloride ions within it, and thus it is expected to significantly improve the service life of reinforced concrete infrastructure. Based on this, this paper firstly summarizes the basic mechanism of chloride ion transport inside cementitious materials, including the movement mode and physicochemical binding mechanism of chloride ions inside the cementitious, and analyzes the current research status and improvement methods of the chloride ion penetration and chloride ion binding capacity of ultra-high-performance concrete.  

DOI10.48014/ems.20231026001
文章类型综 述
收稿日期2023-10-26
接收日期2023-11-22
出版日期2024-03-28
关键词超高性能混凝土, 氯离子, 传输机制, 改善方法
KeywordsUltra-high-performance concrete, chloride ions, transport mechanism, improvement techniques
作者王婧1, 邵四川2, 张立卿3,*
AuthorWANG Jing1, SHAO Sichuan2, ZHANG Liqing3,*
所在单位1. 天津市城市道路设施巡查中心, 天津 300190
2. 大连理工大学土木工程学院, 大连 116024
3. 华东交通大学土木建筑学院, 南昌 330013
Company1. Tianjin Urban Road Facility Inspection Center, Tianjin 300000, China
2. School of Civil Engineering, Dalian University of Technology, Dalian 116024, China
3. School of Civil Engineering and Architecture, East China Jiaotong University, Nanchang 330013, China
浏览量94
下载量32
基金项目本项研究得到了江西省教育厅一般项目(资助号:GJJ210656)和江西省一般科学基金面上项目(资助号: 20224BAB204067)和黑龙江省自然科学基金(资助号:LH2023E069)的资助
参考文献[1] Mehta P K. Durability-Critical Issues for the Future[J]. Concrete international, 1997, 19: 27-33.
[2] 王欣悦, 丁思齐, 董素芬, 等. 混凝土可持续发展: 应对碳排放引起气候变化危机[J]. 工程材料与结构, 2022, 1(1): 1-14.
https://doi.org/:10.48014/ems.20220728001
[3] Singh J K, Singh D D N. The nature of rusts and corrosion characteristics of low alloy and plain carbon steels in three kinds of concrete pore solution with salinity and different pH[J]. Corrosion Science, 2012, 56: 129-142.
https://doi.org/10.1016/j.corsci.2011.11.012
[4] Basheer P A M, Andrews R J, Robinson D J, et al. ‘PERMIT’ ion migration test for measuring the chloride ion transport of concrete on site[J]. NDT & E International, 2005, 38(3): 219-229.
https://doi.org/10.1016/j.ndteint.2004.06.013
[5] 混凝土结构设计规范(GB 50010-2010)[J]. 建设科技, 2015(10): 28-30.
[6] Mehta P K, Monteiro P J M. Concrete: Microstructure, Properties, and Materials[C]. 2005.
https://doi.org/10.2478/amm-2014-0285
[7] Tang L, Nilsson L, Basheer P A M. Resistance of Concrete to Chloride Ingress: Testing and modelling[M]. 2011.
https://doi.org/10.1201/b12603
[8] Barton G. The Mathematics of Diffusion 2nd edn [J]. Physics Bulletin, 1975, 26: 500-501.
[9] Yang Y, Patel R A, Churakov S V, et al. Multiscale modeling of ion diffusion in cement paste: electrical double layer effects[J]. Cement and Concrete Composites, 2019, 96: 55-65.
https://doi.org/10.1016/j.cemconcomp.2018.11.008
[10] Andrade C. Calculation of chloride diffusion coefficients in concrete from ionic migration measurements[J]. Cement and Concrete Research, 1993, 23(3): 724-742.
https://doi.org/10.1016/0008-8846(93)90023-3
[11] Basford J R. The Law of Laplace and its relevance to contemporary medicine and rehabilitation[J]. Archives of physical medicine and rehabilitation, 2002, 83 8: 1165-1170.
https://doi.org/10.1053/apmr.2002.33985
[12] Martín Pérez B, Pantazopoulou S J, Thomas M D A. Numerical solution of mass transport equations in concrete structures[J]. Computers & Structures, 2001, 79: 1251-1264.
https://doi.org/10.1016/S0045-7949(01)00018-9
[13] Haque M N, Kayyali O A. Free and water soluble chloride in concrete[J]. Cement and Concrete Research, 1995, 25(3): 531-542.
https://doi.org/10.1016/0008-8846(95)00042-B
[14] Shi Z, Geiker M R, Lothenbach B, et al. Friedel􀆳s salt profiles from thermogravimetric analysis and thermodynamic modelling of Portland cement-based mortars exposed to sodium chloride solution[J]. Cement and Concrete Composites, 2017, 78: 73-83.
https://doi.org/10.1016/j.cemconcomp.2017.01.002
[15] Paul G, Boccaleri E, Buzzi L, et al. Friedel's salt formation in sulfoaluminate cements: A combined XRD and 27Al MAS NMR study[J]. Cement and Concrete Research, 2015, 67: 93-102.
https://doi.org/10.1016/j.cemconres.2014.08.004
[16] Midgley H G, Illston J M. The penetration of chlorides into hanrdened cement pastes[J]. Cement and Concrete Research, 1984, 14: 546-558.
https://doi.org/10.1016/0008-8846(84)90132-7
[17] Glasser F P. Role of chemical binding in diffusion and mass transport[J]. 2001, 25: 129-154.
[18] Hewlett P C, Lea F M. Lea's chemistry of cement and concrete[M]. 2001.
https://doi.org/10.1016/B978-0-7506-6256-7.X5007-3
[19] Chen Y, Shui Z, Chen W, et al. Chloride binding of synthetic Ca-Al-NO3 LDHs in hardened cement paste[J]. Construction and Building Materials, 2015, 93: 1051-1058.
https://doi.org/10.1016/j.conbuildmat.2015.05.047
[20] Yang Z, Gao Y, Mu S, et al. Improving the chloride binding capacity of cement paste by adding nano-Al2O3[J]. Construction and Building Materials, 2019, 195: 415-422.
https://doi.org/10.1016/j.conbuildmat.2018.11.012
[21] Ekolu S O, Thomas M D A, Hooton R D. Pessimum effect of externally applied chlorides on expansion due to delayed ettringite formation: Proposed mechanism[J]. Cement and Concrete Research, 2006, 36(4): 688-696.
https://doi.org/10.1016/j.cemconres.2005.11.020
[22] Mehta P K. Effect of Cement Composition on Corrosion of Reinforcing Steel in Concrete[J]. ASTM special technical publications, 1977.
https://doi.org/10.1520/STP27949S
[23] Florea M V A, Brouwers H J H. Chloride binding related to hydration products: Part I: Ordinary Portland Cement[J]. Cement and Concrete Research, 2012, 42(2): 282-290.
https://doi.org/10.1016/j.cemconres.2011.09.016
[24] Li C, Jiang L, Xu N, et al. Pore structure and permeability of concrete with high volume of limestone powder addition[J]. Powder Technology, 2018, 338: 416-424.
https://doi.org/10.1016/j.powtec.2018.07.054
[25] Suryavanshi A K, Swamy R N. Stability of Friedel􀆳s salt in carbonated concrete structural elements[J]. Cement and Concrete Research, 1996, 26(5): 729-741.
https://doi.org/10.1016/S0008-8846(96)85010-1
[26] Ye H, Jin X, Chen W, et al. Prediction of chloride binding isotherms for blended cements[J]. Computers and Concrete, 2016, 17(5): 665-682.
https://doi.org/10.12989/cac.2016.17.5.655
[27] Thomas M D A, Hooton R D, Scott A, et al. The effect of supplementary cementitious materials on chloride binding in hardened cement paste[J]. Cement and Concrete Research, 2012, 42(1): 1-7.
https://doi.org/10.1016/j.cemconres.2011.01.001
[28] Diamond S. Chloride concentrations in concrete pore solutions resulting from calcium and sodium chloride admixtures[J]. Cement, Concrete and Aggregates, 1986, 8(2): 97-102.
https://doi.org/10.1520/CCA10062J
[29] Luping T, Nilsson L. Chloride binding capacity and binding isotherms of OPC pastes and mortars[J]. Cement and Concrete Research, 1993, 23(2): 247-253.
https://doi.org/10.1016/0008-8846(93)90089-R
[30] Hirao H, Yamada K, Takahashi H, et al. Chloride binding of cement estimated by binding isotherms of hydrates[J]. Journal of Advanced Concrete Technology, 2005, 3(1): 77-84.
https://doi.org/10.3151/jact.3.77
[31] Birnin-Yauri U A, Glasser F P. Friedel’s salt, Ca2·Al(OH)6(Cl, OH)·2H2O: its solid solutions and their role in chloride binding[J]. Cement and Concrete Research, 1998, 28: 1713-1723.
https://doi.org/10.1016/S0008-8846(98)00162-8
[32] Elakneswaran Y, Nawa T, Kurumisawa K. Electrokinetic potential of hydrated cement in relation to adsorption of chlorides[J]. Cement and Concrete Research, 2009, 39(4): 340-344.
https://doi.org/10.1016/j.cemconres.2009.01.006
[33] Rasheeduzzafar. Influence of cement composition on concrete durability[J]. Materials, 1992, 89: 574-586.
https://doi.org/10.1016/0043-1648(92)90296-K
[34] Tuutti K. Analysis of pore solution squeezed out of cement paste and mortar[J]. Nordic concrete research, 1982.
[35] Mohammed T U, Hamada H. Relationship between free chloride and total chloride contents in concrete[J]. Cement and Concrete Research, 2003, 33(9): 1487-1490.
https://doi.org/10.1016/S0008-8846(03)00065-6
[36] Oh B H, Jang S Y. Effects of material and environmental parameters on chloride penetration profiles in concrete structures[J]. Cement and Concrete Research, 2007, 37(1): 47-53.
https://doi.org/10.1016/j.cemconres.2006.09.005
[37] Ramachandran V S, Seeley R C, Polomark G M. Free and combined chloride in hydrating cemnet and cement components[J]. Materiaux et constructions, 1984, 17(100): 285-289.
https://doi.org/10.1007/BF02479084
[38] Truc O. Prediction of chloride penetration into saturated concrete-multi-species approach[J]. Doktorsavhandlingar vid Chalmers Tekniska Hogskola, 2000(1617): 1-179.
[39] Papadakis V G. Effect of supplementary cementing materials on concrete resistance against carbonation and chloride ingress[J]. Cement and Concrete Research, 2000, 30: 291-299.
[40] Sergi G, Yu S W, Page C L. Diffusion of chloride and hydroxyl ions in cementitious materials exposed to a saline environment[J]. Magazine of Concrete Research, 1992, 44: 63-69.
https://doi.org/10.1680/macr.1992.44.158.63
[41] Luping T. Chloride Transport in Concrete-Measurement and Prediction[C]. 1996.
[42] Qiao C, Coyle A T, Isgor O B, et al. Prediction of Chloride Ingress in Saturated Concrete Using Formation Factor and Chloride Binding Isotherm[J]. Advances in Civil Engineering Materials, 2018, 7: 20170141.
https://doi.org/10.1520/ACEM20170141
[43] Zibara H. Binding of external chlorides by cement pastes[C]. 2001.
[44] 王绍东, 黄煜镔, 王智. 水泥组分对混凝土固化氯离子能力的影响[J]. 硅酸盐学报, 2000(06): 570-574.
[45] Wang D, Zhang W, Ruan Y, et al. Enhancements and mechanisms of nanoparticles on wear resistance and chloride penetration resistance of reactive powder concrete[J]. Construction and Building Materials, 2018.
https://doi.org/10.1016/j.conbuildmat.2018.09.041
[46] Mostafa S A, EL-Deeb M M, Farghali A A, et al. Evaluation of the nano silica and nano waste materials on the corrosion protection of high strength steel embedded in ultra-high performance concrete[J]. Scientific Reports, 2021, 11.
https://doi.org/10.1038/s41598-021-82322-0
[47] 丁思齐, 王欣悦, 王佳亮, 等. 纳米工程化混凝土研究新进展[J]. 工程材料与结构, 2023, 2(4): 68-83.
https://doi.org/10.48014/emc.20230807001
[48] 李祯, 孙梦月, 刘志强, 等. 用于可持续基础设施的高性能与多功能纳米氧化钛混凝土[J]. 工程材料与结构, 2023, 2(3): 30-63.
https://doi.org/10.48014/ems.20230327001
[49] Li W, Wittmann F H, Jiang R, et al. Integral Water Repellent Concrete Produced by Addition of Metal Soaps[J]. Restoration of Buildings and Monuments, 2012, 18: 41-48.
https://doi.org/10.1515/rbm-2012-6499
[50] Nazar S, Yang J, Thomas B S, et al. Rheological properties of cementitious composites with and without nanomaterials: A comprehensive review[J]. Journal of Cleaner Production, 2020, 272: 122701.
https://doi.org/10.1016/j.jclepro.2020.122701
[51] Du Y, Yang J, Skariah Thomas B, et al. Influence of hybrid graphene oxide/carbon nanotubes on the mechanical properties and microstructure of magnesium potassium phosphate cement paste[J].Construction and Building Materials, 2020, 260: 120449.
https://doi.org/10.1016/j.conbuildmat.2020.120449
[52] Du Y, Yang J, Skariah Thomas B, et al. Hybrid graphene oxide/carbon nanotubes reinforced cement paste: An investigation on hybrid ratio[J]. Construction and Building Materials, 2020, 261: 119815.
https://doi.org/10.1016/j.conbuildmat.2020.119815
[53] Shaikh F, Supit S W M. Chloride induced corrosion durability of high volume fly ash concretes containing nano particles[J]. Construction and Building Materials, 2015, 99: 208-225.
https://doi.org/10.1016/j.conbuildmat.2015.09.030
[54] 李永斌. 纳米SiO2 协同粉煤灰对混凝土性能的影响实验研究[J]. 粉煤灰综合利用, 2020, 34(03): 92-95.
https://doi.org/10.3969/j.issn.1005-8249.2020.03.020
[55] 梅军帅, 吴静, 王罗新, 等. 纳米SiO2 改性的砂浆保护层对混凝土氯离子渗透性的影响[J]. 硅酸盐通报, 2018, 37(12): 3738-3743.
[56] Mei J, Ma B, Huang A P J, et al. Effect of nano-TiO2 on chloride ingress in cementitious material[J]. ZKG International, 2017, 70(9): 60-67.
[57] 韩林阳. 纳米水泥基复合材料耐磨性与抗氯离子渗透性[D]. 大连: 大连理工大学, 2018.
[58] Jalal M, Fathi M, Farzad M. RETRACTED: Effects of fly ash and TiO2 nanoparticles on rheological, mechanical, microstructural and thermal properties of high strength self compacting concrete[J]. Mechanics of Materials, 2013, 61: 11-27.
https://doi.org/10.1016/j.mechmat.2013.01.010
[59] Jalal M, Ramezanianpour A A, Pool M K. RETRACTED: Split tensile strength of binary blended self compacting concrete containing low volume fly ash and TiO2 nanoparticles[J]. Composites Part B: Engineering, 2013, 55: 324-337.
https://doi.org/10.1016/j.compositesb.2023.110533
[60] Joshaghani A, Balapour M, Mashhadian M, et al. Effects of nano-TiO2, nano-Al2O3, and nano-Fe2O3 on rheology, mechanical and durability properties of self-consolidating concrete(SCC): An experimental study[J]. Construction and Building Materials, 2020, 245: 118444.
https://doi.org/10.1016/j.conbuildmat.2020.118444
[61] Chinthakunta R, Ravella D P, Sri Rama Chand M, et al. Performance evaluation of self-compacting concrete containing fly ash, silica fume and nano titanium oxide[J]. Materials Today: Proceedings, 2021, 43: 2348-2354.
https://doi.org/10.1016/j.matpr.2021.01.681
[62] Chunping G, Qiannan W, Jintao L, et al. The effect of nano-TiO2 on the durability of ultra-high performance concrete with and without a flexural load[J]. Ceramics- Silikaty, 2018, 62(4): 374-381.
[63] Han B, Zhang L, Zeng S, et al. Nano-core effect in nanoengineeredcementitious composites [J]. CompositesPart A: Applied Science and Manufacturing, 2017, 95: 100-109.
https://doi.org/10.1016/j.compositesa.2017.01.008
[64] 程马遥, 曾洋, 杨虹. 碳纳米管增强水泥基注浆材料的制备及其注浆性能研究[J]. 功能材料, 2020, 51(11): 11207-11213.
https://doi.org/10.3969/j.issn.1001-9731.2020.11.031
[65] Carriço A, Bogas J A, Hawreen A, et al. Durability ofmulti-walled carbon nanotube reinforced concrete[J]. Construction and Building Materials, 2018, 164: 121-133.
https://doi.org/10.1016/j.conbuildmat.2017.12.221
[66] Li W, Liu Y, Jiang Z, et al. Chloride-induced corrosionbehavior of reinforced cement mortar with MWCNTs[J]. Science and Engineering of Composite Materials, 2020, 27(1): 281-289.
https://doi.org/10.1515/secm-2020-0029
[67] Wang T, Xu J, Meng B, et al. Experimental study on theeffect of carbon nanofiber content on the durability ofconcrete[J]. Construction and Building Materials, 2020, 250: 118891.
https://doi.org/10.1016/j.conbuildmat.2020.118891
[68] 李相国, 明添, 刘卓霖. 碳纳米管水泥基复合材料耐久性及力学性能研究[J]. 硅酸盐通报, 2018, 37(05): 1497-1502.
[69] Zhang W, Han B, Yu X, et al. Nano boron nitride modifiedreactive powder concrete[J]. Construction andBuilding Materials, 2018, 179: 186-197.
https://doi.org/10.1016/j.conbuildmat.2018.05.244
[70] Arslan S, Öksüzer N, Gökçe H S. Improvement of mechanicaland transport properties of reactive powderconcrete using graphene nanoplatelet and waste glassaggregate[J]. Construction and Building Materials, 2022, 318: 126199.
https://doi.org/10.1016/j.conbuildmat.2021.126199
[71] Chu H, Zhang Y, Wang F, et al. Effect of Graphene Oxideon Mechanical Properties and Durability of Ultra-High-Performance Concrete Prepared from RecycledSand[J]. Nanomaterials, 2020, 10.
https://doi.org/10.3390/nano10091718
[72] Karim R, Najimi M, Shafei B. Assessment of transportproperties, volume stability, and frost resistance of nonproprietaryultra-high performance concrete[J]. Constructionand Building Materials, 2019, 227: 117031.
https://doi.org/10.1016/j.conbuildmat.2019.117031
[73] Yu L, Wu R. Using graphene oxide to improve theproperties of ultra-high-performance concrete with finerecycled aggregate[J]. Construction and Building Materials, 2020, 259: 120657.
https://doi.org/10.1016/j.conbuildmat.2020.120657
[74] Jung M S, Kim K B, Lee S A, et al. Risk of chloride-inducedcorrosion of steel in SF concrete exposed to achloride-bearing environment[J]. Construction andBuilding Materials, 2018, 166: 413-422.
https://doi.org/10.1016/j.conbuildmat.2018.01.168
[75] Thomas M, Hooton R D, Scott A, et al. The effect ofsupplementary cementitious materials on chloride bindingin hardened cement paste[J]. Cement and ConcreteResearch, 2012, 42: 1-7.
https://doi.org/10.1016/j.cemconres.2011.01.001
[76] Arya C, Buenfeld N R, Newman J B. Factors influencingchloride-binding in concrete[J]. Cement and ConcreteResearch, 1990, 20(2): 291-300.
https://doi.org/10.1016/0008-8846(90)90083-A
[77] Page C L, Vennesland Ø. Pore solution composition andchloride binding capacity of silica-fume cement pastes[J]. Matériaux et Construction, 1983, 16: 19-25.
https://doi.org/10.1007/BF02474863
[78] Dhir R K, EL-MOHR M A K, Dyer T D. Developingchloride resisting concrete using PFA[J]. Cement andConcrete Research, 1997, 27: 1633-1639.
https://doi.org/10.1016/S0008-8846(97)00146-4
[79] Wiens U, Schie P. Chloride binding of cement pastecontaining fly ash[C]. 1997.
[80] Nagataki S, Otsuki N, Wee T H, et al. Condensation ofchloride ion in hanrdened cement matrix materials andon embedded steel bars[J]. ACI Materials Journal, 1993, 90: 323-332.
https://doi.org/10.1016/0921-5093(93)90754-3
引用本文王婧, 邵四川, 张立卿. 超高性能混凝土抗氯离子侵蚀综述[J]. 工程材料与结构, 2024, 3(1): 1-13.
CitationWANG Jing, SHAO Sichuan, ZHANG Liqing. A review of chloride corrosion resistance of ultrahigh- performance concrete[J]. Engineering Materials and Structures, 2024, 3(1): 1-13.