参考文献
[1] J. Kim, W. Lim. Prediction of compressive strength and elastic modulus for ultra-high-performance concrete[J]. Construction and Building Materials, 2023, 363: 129883. https://doi.org/10.1016/j.conbuildmat.2022.129883 [2] X. Zhao, L. Cai, X. Ji, et al. Mechanical properties of polyethylene fiber reinforced ultra high performance concrete[ J]. Materials, 2022, 15(24): 8734. https://doi.org/10.3390/ma15248734 [3] Y. Zhu, H. Hussein, A. Kumar, et al. A review: material and structural properties of uhpc at elevated temperatures or fire conditions[J]. Cement and Concrete Composites, 2021, 123: 104212. https://doi.org/10.1016/j.cemconcomp.2021.104212 [4] S. Kang, Y. Lee, Y. Park, et al. Tensile fracture properties of an ultra high performance fiber reinforced concrete with steel fiber[J]. Composite Structures, 2010, 92(1): 61-71. https://doi.org/10.1016/j.compstruct.2009.06.012 [5] 徐翔波, 于泳, 金祖权, 等. 养护制度对超高性能混凝土微观结构和力学性能影响的研究综述[J]. 硅酸盐通报, 2021, 40(9): 2856-2870. https://doi.org/10.16552/j.cnki.issn1001-1625.2021.09.001 [6] 朱从香, 杨鼎宜, 王群, 等. 养护制度对UHPC力学性能的影响研究[J]. 混凝土, 2020, 10: 43-46. https://doi.org/10.3969/j.issn.1002-3550.2020.10.010 [7] S. Dong, X. Wang, B. Han, et al. Stainless steel wires-engineered multifunctional ultra-high performance concrete [M]. Taylor and Francis, 2023, 7: 209-213. https://doi.org/10.1201/9781003276357 [8] B. He, O. Onuaguluchi, N. Banthia, et al. Failure mechanism of steel fiber pullout in uhpc affected by alternating cryogenic and elevated variation[J]. Cement and Concrete Composites, 2024, 149: 105518. https://doi.org/10.1016/j.cemconcomp.2024.105518 [9] 王德辉, 史才军, 吴林妹. 超高性能混凝土在中国的研究和应用[J]. 硅酸盐通报, 2016, 35(01): 141-149. https://doi.org/10.16552/j.cnki.issn1001-1625.2016.01.026 [10] P. Zhang, E. Wang, Y. Xia, et al. Hydration, microstructure and mechanical properties of the research progress of ultra-high-performance concrete[J]. Hans Journal of Civil Engineering, 2018, 07(02): 194-204. https://doi.org/10.12677/hjce.2018.72024 [11] 赵雅明, 张振, 王畔, 等. 矿物掺合料对UHPC性能的影响[J]. 硅酸盐通报, 2022, 41(9): 3170-3175. https://doi.org/10.16552/j.cnki.issn1001-1625.2022.09.028 [12] 郑琨鹏, 葛好升, 李正川, 等. 常用矿物掺合料对超高性能混凝土性能的影响[J]. 混凝土世界, 2022(4): 42-52. https://doi.org/10.3969/j.issn.1674-7011.2022.04.011 [13] 卫煜. 固废基超细矿物掺合料制备UHPC及性能研究 [D]. 桂林: 桂林理工大学, 2012. https://doi.org/10.27050/d.cnki.gglgc.2021.000572 [14] 朱德, 韩阳, 段君峰, 等. 高温后钢纤维加强混凝土有效 导热系数计算方法[J]. 硅酸盐通报, 2021, 40(5): 1510-1519. https://doi.org/10.16552/j.cnki.issn1001-1625.2021.05.009 [15] 崔建明. 超高性能混凝土中的掺合料应用研究[J]. 合成材料老化与应用, 2022, 51(6): 132-134. https://doi.org/10.16584/j.cnki.issn1671-5381.2022.06.039 [16] 王青沙. 矿物掺合料对超高性能混凝土性能影响试验研究[J]. 混凝土, 2025(2): 188-192. https://doi.org/10.3969/j.issn.1002-3550.2025.02.035 [17] 钟维军, 金权, 贺智敏, 等. 养护对超高性能混凝土强度和显微硬度的影响[J]. 混凝土, 2021(8): 33-37. https://doi.org/10.3969/j.issn.1002-3550.2021.08.008 [18] 杨峻一, 刘艳, 黄俊强, 等. UHPC养护温度对力学性能的影响[J]. 城市道桥与防洪, 2024(4): 271-273. https://doi.org/10.16799/j.cnki.csdqyfh.2024.04.063 [19] 罗遥凌, 杨文, 谢昱昊, 等. 养护温度对UHPC水化及力学性能影响研究[J]. 硅酸盐通报, 2021, 40(2): 431-438. https://doi.org/10.16552/j.cnki.issn1001-1625.2021.02.009 [20] 袁晟, 颜东煌, 袁明, 等. 养护方式和早龄期对钢纤维-UHPC基体界面黏结性能的影响[J]. 长安大学学报, 2022, 42(6): 133-142. https://doi.org/10.19721/j.cnki.1671-8879.2022.06.013 [21] 侯庆刚, 乔大玮, 胡凤娇, 等. 养护温度对UHPC力学性能的影响[J]. 山东交通学院学报, 2024, 32(2): 42- 46, 59. https://doi.org/10.3969/j.issn.1672-0032.2024.02.006 [22] 吴守荣. 电热养护水泥基材料强度发展促进机制研究[D]. 北京: 中国矿业大学, 2020. https://doi.org/10.27623/d.cnki.gzkyu.2020.002235 [23] C. Krämer, M. Schauerte, T. Müller, et al. Application of reinforced three-phase-foams in uhpc foam concrete[J]. Construction and Building Materials, 2017, 131: 746-757. https://doi.org/10.1016/j.conbuildmat.2016.11.027 [24] H. Yazıcı, H. Yiˇgiter, A. Karabulut, et al. Utilization of fly ash and ground granulated blast furnace slag as an alternative silica source in reactive powder concrete[J]. Fuel, 2008, 87(12): 2401-2407. https://doi.org/10.1016/j.fuel.2008.03.005 [25] 张鑫. 钢纤维掺量对超高性能混凝土强度的影响分析[J]. 吉林水利, 2025, 34(2): 25-29. https://doi.org/10.15920/j.cnki.22-1179/tv.2025.02.005 [26] 刘倩文. 纤维对混凝土受拉力学性能及渗透性能的影响[D]. 大连: 大连理工大学, 2021. https://doi.org/10.26991/d.cnki.gdllu.2021.001574 [27] Z. Shi, Q. Su, F. Kavoura, et al. Uniaxial tensile response and tensile constitutive model of ultra-high performance concrete containing coarse aggregate[J]. Cement and Concrete Composites, 2023, 136: 104878. https://doi.org/10.1016/j.cemconcomp.2022.104878 [28] K. Wille, A. E. Naaman, S. El-Tawil, et al. Ultra-high performance concrete and fiber reinforced concrete: achieving strength and ductility without heat curing[J]. Materials and Structures, 2012, 45(3): 309-324. https://doi.org/10.1617/s11527-011-9767-0 [29] J. Du, W. Meng, K. H. Khayat, et al. New development of ultra-high-performance concrete[J]. Composites Part B: Engineering, 2021, 224: 109220. https://doi.org/10.1016/j.compositesb.2021.109220 [30] D. Yoo, N. Banthia. Mechanical properties of ultra-highperformance fiber-reinforced concrete: a review[J]. Cement and Concrete Composites, 2016, 73: 267-280. https://doi.org/10.1016/j.cemconcomp.2016.08.001 [31] D. Wang, C. Shi, Z. Wu, et al. A review on ultra high performance concrete: part II. hydration, microstructure and properties[J]. Construction and Building Materials, 2015, 96: 368-377. https://doi.org/10.1016/j.conbuildmat.2015.08.095 [32] D. Fan, W. Tian, R. Yu. Incorporation of liquid phase into solid particle packing model for precise design of low water/binder cement-based composites: modeling and experiments[J]. Composites Part B: Engineering, 2022, 242: 110070. https://doi.org/10.1016/j.compositesb.2022.110070 [33] G. Peng, J. Wu, C. Shi, et al. Effect of thermal curing regimes on the mechanical properties, and durability of uhpc: a state-of-the-art review[J]. Structures, 2025, 74: 108667. https://doi.org/10.1016/j.istruc.2025.108667 [34] F. L. Bolina, G. Poleto, H. Carvalho. Proposition of parametric data for uhpc at high temperatures[J]. Journal of Building Engineering, 2023, 76: 107-222. https://doi.org/10.1016/j.jobe.2023.107222 [35] F. L. Bolina, B. D. Lago, E. D. Rodríguez. Effects of thermal properties on temperature field of uhpc structures under fire conditions[J]. Construction and Building Materials, 2024, 411: 134-254. https://doi.org/10.1016/j.conbuildmat.2023.134254 [36] Bazant, Z. P. , M. F. Kaplan. Concrete at high temperatures: material properties and mathematical models [C]. Civil and Environmental Engineering, 1996. [37] V. Kodur, S. Banerji, S. Roya. Effect of temperature on thermal properties of ultra high-performance concrete[J]. Journal of Materials in Civil Engineering, 2020, 32(8): 04020210. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003286 [38] V. Kodur, W. Khaliq. Effect of temperature on thermal properties of different types of high-strength concrete [J]. Journal of Materials in Civil Engineering, 2011, 23(6): 793-801. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000225 [39] C. Laneyrie, A. Beaucour, M. F. Green, et al. Influence of recycled coarse aggregates on normal and high performance concrete subjected to elevated temperatures [J]. Construction and Building Materials, 2016, 111: 368-378. https://doi.org/10.1016/j.conbuildmat.2016.02.056 [40] Harmathy, T. Z. Thermal properties of concrete at elevated temperatures[J]. Journal of Materials, 1970, 5(1): 47-74. https://doi.org/10.4224/40001475 [41] C. Xue, M. Yu, H. Xu, et al. Experimental study on thermal performance of ultra-high performance concrete with coarse aggregates at high temperature[J]. Construction and Building Materials, 2022, 314: 125585. https://doi.org/10.1016/j.conbuildmat.2021.125585 [42] T. Log, S. E. Gustafsson. Transient plane source tech- nique for measuring thermal transport properties of building materials[J]. Fire and Materials, 1995, 19(1): 43-49. https://doi.org/10.1002/fam.810190107 [43] D. Bentz, M. Peltz, A. Dur'an-Herrera, et al. Thermal properties of high-volume fly ash mortars and concretes[ J]. Journal of Building Physics, 2011, 34(3): 263-275. https://doi.org/10.1177/1744259110376613 [44] V. K. R. Kodur, M. Sultan. Thermal properties of high strength concrete at elevated temperatures: canmet/aci/ jci international conference on recent advances in concrete technology[C]. Tokushima, Japan, 1998: 467-480. [45] I. Yang, J. Park. Mechanical and thermal properties ofuhpc exposed to high-temperature thermal cycling[J]. Advances in Materials Science and Engineering, 2019: 9723693. https://doi.org/10.1155/2019/9723693 [46] M. Jung, J. Park, S. Hong, et al. The critical incorporationconcentration of dispersed carbon nanotubes fortailoring multifunctional properties of ultra-high performanceconcrete[J]. Journal of Materials Researchand Technology, 2022, 17: 3361-3370. https://doi.org/10.1016/j.jmrt.2022.02.103 [47] 王丹娜. 镀镍碳纳米管复合超高性能水泥基材料的性能及构效关系研究[D]. 大连: 大连理工大学, 2024: 141-154. https://doi.org/10.26991/d.cnki.gdllu.2024.000548 [48] ASTM E1461-13, Standard test method for thermal diffusivityby the flash method[C]. American Society forTesting and Materials, 2022. [49] S. Dong, X. Wang, H. Xu, et al. Incorporating super-finestainless wires to control thermal cracking of concretestructures caused by heat of hydration[J]. Constructionand Building Materials, 2021, 271: 121896. https://doi.org/10.1016/j.conbuildmat.2020.121896 [50] X. Zhang, Z. Liu, F. Wang. Autogenous shrinkage behaviorof ultra-high performance concrete[J]. Constructionand Building Materials. 2019, 226: 459-468. [51] ASTM C531, Standard test method for linear shrinkageand coefficient of thermal expansion of chemical-resistantmortars, grouts, monolithic surfacing’s, and polymerconcretes[D]. ASTM International, 2012. [52] O. Bjontegaard, T. A. Hammer, E. J. Sellevold. On themeasurement of free de formation of early age cementpaste and concrete[J]. Cement and Concrete Composites, 2004, 26(5): 427-435. https://doi.org/10.1016/S0958-9465(03)00065-9 [53] G. L. Crawford, J. M. Gudimettla, J. Tanesi. Interlaboratorystudy on measuring coefficient of thermal expansionof concrete[J]. Journal of the Transportation ResearchBoard, 2010, 2164: 58-65. [54] S. Siddiqui, D. W. Fowler. A systematic optimizationtechnique for the coefficient of thermal expansion ofportland cement concrete[J]. Construction and BuildingMaterials, 2015, 88: 204-211. https://doi.org/10.1016/j.conbuildmat.2015.04.008 [55] G. C. Siang. Determination of coefficient of thermal expansionof 20MPa mass concrete using granite aggregate[J]. IOP Conference Series: Materials Science andEngineering, 2017, 217. https://doi.org/10.1088/1757-899X/217/1/012009 [56] J. Heum, S. Choi, M. C. Won. In situ measurement ofcoefficient of thermal expansion in hardening concreteand its effect on thermal stress development[J]. Constructionand Building Materials, 2013. 38: 306-315. https://doi.org/10.1016/j.conbuildmat.2012.07.111 [57] T. Ji, B. Zhang, Y. Zhuang, et al. Effect of lightweightaggregate on early-age autogenous shrinkage of concrete[J]. ACI Materials Journal, 2015, 112: 355-364. https://doi.org/10.14359/51687229 [58] H. Kada, M. Lachemi, N. Petrov, et al. Determination ofthe coefficient of thermal expansion of high-performanceconcrete from initial setting[J]. Materials andStructures, 2002, 35: 35-41. https://doi.org/10.1007/BF02482088 [59] L. Myers, J. M. Gudimettla, G. L. Crawford, et al. Impactsof variability in coefficient of thermal expansionon predicted concrete pavement performance[J]. Constructionand Building Materials, 2015, 93: 711-719. https://doi.org/10.1016/j.conbuildmat.2015.04.058 [60] I. Maruyama, A. Teramoto. Impact of time-dependantthermal expansion coefficient on the early-age volumechanges in cement pastes[J]. Cement and Concrete Research, 2011, 41(4): 380-391. https://doi.org/10.1016/j.cemconres.2011.01.003 [61] E. J. Sellevold, O. Bjontegaard. Coefficient of thermalexpansion of cement paste and concrete: mechanism ofmoisture interaction[J]. Materials and Structures, 2006, 39: 809-815. https://doi.org/10.1617/s11527-006-9086-z [62] O. Bjontegaard, E. J. Sellevold. Interaction betweenthermal dilation and autogenous deformation in highperformance concrete[J]. Materials and Structures, 2001, 34: 266-272. https://doi.org/10.1007/BF02482205 [63] D. Cusson, T. J. Hoogeveen. Measuring early-age coefficientof thermal expansion in high-performance concrete[C]. International RILEM conference on volumechanges of hardening concrete: testing and mitigation. Lyngby, Denmark, 2006. [64] B. Delsaute. New approach for monitoring and modellingof the creep and shrinkage behaviour of cementpastes, mortar and concretes since setting time[C]. Université Libre de Bruxelles, BATir, Belgium, 2016. [65] T. R. Naik, R. N. Kraus, R. Kumar. Influence of typesof coarse aggregates on the coefficient of thermal expansionof concrete[J]. Journal of Materials in CivilEngineering, 2011, 23(4): 467-472. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000198 [66] L. Li, V. Dao, P. Lura. Autogenous deformation and coefficientof thermal expansion of early-age concrete: initialoutcomes of a study using a newly-developed temperaturestress testing machine[J]. Cement and ConcreteComposites, 2021, 119: 103997. https://doi.org/10.1016/j.cemconcomp.2021.103997 [67] Ø. Bjøntegaard. Basis for and practical approaches tostress calculations and crack risk estimation in hardeningconcrete structures-state of the art[C]. COIN Project, SINTEF Building and Infrastructure, 2011. [68] E. J. Sellevold, Ø. Bjøntegaard. Coefficient of thermalexpansion of cement paste and concrete: mechanisms ofmoisture interaction[J]. Materials and Structures, 2006, 39: 809-815. https://doi.org/10.1617/s11527-006-9086-z [69] Z. C. Grasley, D. A. Lange. Thermal dilation and internalrelative humidity of hardened cement paste[J]. MaterialsAnd Structures, 2007, 40: 311-317. https://doi.org/10.1617/s11527-006-9108-x [70] M. Wyrzykowski, P. Lura. Controlling the coefficient ofthermal expansion of cementitious materials-a new applicationfor superabsorbent polymers[J]. Cement andConcrete Composites, 2013, 35: 49-58. https://doi.org/10.1016/j.cemconcomp.2012.08.010 [71] H. Qin, J. Yang, K. Yan, et al. Experimental research onthe spalling behaviour of ultra-high performance concreteunder fire conditions[J]. Construction and BuildingMaterials, 2021, 303: 124464. https://doi.org/10.1016/j.conbuildmat.2021.124464 [72] B. Zahabizadeh, A. Edalat-Behbahani, et al. A new testsetup for measuring early age coefficient of thermal expansionof concrete[J]. Cement and Concrete Composites, 2019, 98: 14-28. https://doi.org/10.1016/j.cemconcomp.2019.01.014 [73] P. Childs, A. C. L. Wong, N. Gowripalan, et al. Measurementof the coefficient of thermal expansion of ultra-high strength cementitious composites using fibreoptic sensors[J]. Cement and Concrete Research, 2007, 37(5): 789-795. https://doi.org/10.1016/j.cemconres.2007.02.015 [74] V. Kodur. Properties of concrete at elevated temperatures[J]. Isrn Civil Engineering, 2014, 2014: 1-15. https://doi.org/10.1155/2014/468510 [75] Carpenter, M. A. , E. K. Salje, et al. Calibration of excessthermodynamic properties and elastic constantvariations associated with the alpha<->beta phase transitionin quartz[J]. American Mineralogist, 1998, 83(1-2): 2-22. https://doi.org/10.2138/am-1998-1-201 [76] Y. Fu, Y. Wong, C. Poon, et al. Experimental study ofmicro/macro crack development and stress-strain relationsof cement-based composite materials at elevatedtemperatures[J]. Cement and Concrete Research, 2004, 34(5): 789-797. https://doi.org/10.1016/j.cemconres.2003.08.029 [77] Y. Du, H. Qi, S. Huang, et al. Experimental study onthe spalling behaviour of ultra-high strength concretein fire[J]. Construction and Building Materials, 2020, 258: 120334. https://doi.org/10.1016/j.conbuildmat.2020.120334 [78] L. Missemer, E. Ouedraogo, Y. Malecot, et al. Fire spallingof ultra-high performance concrete: from a globalanalysis to microstructure investigations[J]. Cementand Concrete Research, 2019, 115: 207-219. https://doi.org/10.1016/j.cemconres.2018.10.005 [79] Y. Li. Effect of post-fire curing and silica fume on permeabilityof ultra-high performance concrete[J]. Constructionand Building Materials, 2021, 290: 123175. https://doi.org/10.1016/j.conbuildmat.2021.123175 [80] Y. Li, D. Zhang. Effect of lateral restraint and inclusion of polypropylene and steel fibers on spalling behavior, pore pressure, and thermal stress in ultra-high-performanceconcrete at elevated temperature[J]. Constructionand Building Materials, 2021, 271: 121879. https://doi.org/10.1016/j.conbuildmat.2020.121879 [81] A. Gil, S. Banerji, V. Kodur. Factors influencing porepressure measurements in concrete during heating andits influence on fire-induced spalling[J]. Cement andConcrete Composites, 2023, 142: 105228. https://doi.org/10.1016/j.cemconcomp.2023.105228 [82] H. Ye, N. Feng, Y. Ling-hu, et al. Research on fire resistanceof ultra-high-performance concrete[J]. Advancesin Materials Science and Engineering, 2012, 2012: 1-7. https://doi.org/10.1155/2012/530948 [83] J. Liu, K. H. Tan, Y. Yao. A new perspective on natureof fire-induced spalling in concrete[J]. Construction andBuilding Materials, 2018, 184: 581-590. https://doi.org/10.1016/j.conbuildmat.2018.06.204 [84] V. Kodur, S. Banerji. Modeling the fire-induced spallingin concrete structures incorporating hydro-thermo-mechanicalstresses[J]. Cement and Concrete Composites, 2021, 117: 103902. https://doi.org/10.1016/j.cemconcomp.2020.103902 [85] A. Lau, M. Anson. Effect of high temperatures on highperformance steel fiber reinforced concrete[J]. Cementand Concrete Research, 2006, 36(9): 1698-1707. https://doi.org/10.1016/j.cemconres.2006.03.024 [86] X. Liang, C. Wu, Y. Su, et al. Development of ultra-highperformance concrete with high fire resistance[J]. Constructionand Building Materials, 2018, 179: 400-412. https://doi.org/10.1016/j.conbuildmat.2018.05.241 [87] Z. Jin, H. Tian, B. Liang, et al. Exploring the synthesiseffects of glazed hollow beads and polypropylene fiberson the strength retention of ultra-high performanceconcrete after fire exposure using x-ray computedtomography[J]. Case Studies in Construction Materials, 2024, 21: e3782. https://doi.org/10.1016/j.cscm.2024.e03782