参考文献
[1] Damme H V. Concrete material science: Past, present, and future innovations[J]. Cement and Concrete Research. 2018, 112: 5-24. https://doi.org/10.1016/j.cemconres.2018.05.002 [2] Zhou M, Wu Z M, Ouyang X, et al. Mixture design methods for ultra-high-performance concrete-a review[J]. Cement and Concrete Composites. 2021, 124: 104242. https://doi.org/10.1016/j.cemconcomp.2021.104242 [3] Tai Y S, El-Tawil S, Chung T H. Performance of deformed steel fibers embedded in ultra-high performance concrete subjected to various pullout rates[J]. Cement and Concrete Research. 2016, 89: 1-13. https://doi.org/10.1016/j.cemconres.2016.07.013 [4] 住房和城乡建设部. 《“十四五”建筑节能与绿色建筑发 展规划》[EB/OL]. 住房和城乡建设部. 2022. http://www.gov.cn/zhengce/zhengceku/2022-03/12/content_5678698.htm [5] Dong S F, Wang X Y, Ashour A, et al. Enhancement and underlying mechanisms of stainless steel wires to fatigue properties of concrete under flexure[J]. Cement and Concrete Composites. 2022, 126: 104372. https://doi.org/10.1016/j.cemconcomp.2021.104372 [6] Zhu W N, Huang B Y, Zhao J Y, et al. Impacts on the embodied carbon emissions in China’s building sector and its related energy-intensive industries from energysaving technologies perspective: A dynamic CGE analysis[J]. Energy and Buildings. 2023: 112926. https://doi.org/10.1016/j.enbuild.2023.112926 [7] Liu Y S, Tian W C, Wang M Z, et al. Rapid strength formation of on-site carbon fiber reinforced high-performance concrete cured by ohmic heating[J]. Construction and Building Materials. 2020, 244: 118344. https://doi.org/10.1016/j.conbuildmat.2020.118344 [8] Ouyang M Z, Tian W C, Liu Y S, et al. Gradient power modified ohmic heating curing to prepare hybrid carbon fibers/high performance concrete under deep-freeze low temperature[J]. Construction and Building Materials. 2022, 330: 127279. https://doi.org/10.1016/j.conbuildmat.2022.127279 [9] Ferdosian I, Camoes A. Mechanical performance and postcracking behavior of self-compacting steel-fiber reinforced eco-efficient ultra-high performance concrete[J]. Cement and Concrete Composites. 2021, 121: 104050. https://doi.org/10.1016/j.cemconcomp.2021.104050 [10] Kim M K, Kim D J, An Y K. Electro-mechanical selfsensing response of ultra-high-performance fiber-reinforced concrete in tension[J]. Composites Part B: Engineering. 2018, 134: 254-264. https://doi.org/10.1016/j.compositesb.2017.09.061 [11] Yoo D Y, Oh T, Banthia N. Nanomaterials in ultrahigh- performance concrete(UHPC)-a review[J]. Cement and Concrete Composites. 2022, 134: 104730. https://doi.org/10.1016/j.cemconcomp.2022.104730 [12] Zhang S S, Wang J J, Lin G, et al. Stress-strain models for ultra-high performance concrete(UHPC)and ultrahigh performance fiber-reinforced concrete(UHPFRC)under triaxial compression[J]. Construction and Building Materials. 2023, 370: 130658. https://doi.org/10.1016/j.conbuildmat.2023.130658 [13] Huang Y, Wang J H, Wei Q A, et al. Creep behaviour of ultra-high-performance concrete(UHPC): A review[J]. Journal of Building Engineering. 2023, 69: 106187. https://doi.org/10.1016/j.jobe.2023.106187 [14] Hung C C, Lee H S, Chan S N. Tension-stiffening effect in steel-reinforced UHPC composites: Constitutive model and effects of steel fibers, loading patterns, and rebar sizes[J]. Composites Part B: Engineering. 2018, 134: 254-264. https://doi.org/10.1016/j.compositesb.2018.09.091 [15] Zhong H, Chen M, Zhang M Z. Effect of hybrid industrial and recycled steel fibers on static and dynamic mechanical properties of ultra-high performance concrete[J]. Construction and Building Materials. 2023, 370: 130691. https://doi.org/10.1016/j.conbuildmat.2023.130691 [16] Tahwia A M, Hamido M A, Elemam W E. Using mixture design method for developing and optimizing ecofriendly ultra-high performance concrete characteristics[J]. Case Studies in Construction Materials. 2023, 18: e01807. https://doi.org/10.1016/j.cscm.2022.e01807 [17] Yin T Y, Liu K N, Fan D Q, et al. Derivation and verification of multilevel particle packing model for ultrahigh performance concrete(UHPC): Modelling and experiments[J]. Cement and Concrete Composites. 2023, 136: 104889. https://doi.org/10.1016/j.cemconcomp.2022.104889 [18] 邵旭东, 樊伟, 黄政宇. 超高性能混凝土在结构中的应 用[J]. 土木工程学报. 2021, 54(01): 1-13. https://doi.org/10.15951/j.tmgcxb.2021.01.001 [19] Lee S H, Kim S, Yoo D Y. Hybrid effects of steel fiber and carbon nanotube on self-sensing capability of ultrahigh- performance concrete[J]. Construction and Building Materials. 2018, 185: 530-544. https://doi.org/10.1016/j.conbuildmat.2018.07.071 [20] You I, Yoo D Y, Kim S, et al. Electrical and self-sensing pProperties of ultra-high-performance fiber-reinforced concrete with carbon nanotubes[J]. Sensors. 2017, 17: 2481. https://doi.org/10.3390/s17112481 [21] Qin H Y, Ding S Q, Qiu L S, et al. Electrical properties of ultra-high-performance concrete with various reinforcing fibers[J]. Measurement Science and Technology. 2024, 35, 035601. https://doi.org/10.1088/1361-6501/ad128f [22] Jung M, Park J S, Hong S G, et al. Micro-and mesostructural changes on electrically cured ultra-high performance fiber-reinforced concrete with dispersed carbon nanotubes[J]. Cement and Concrete Research. 2020, 137: 106214. https://doi.org/10.1016/j.cemconres.2020.106214 [23] Qiu L S, Dong S F, Yu X, et al. Self-sensing ultra-high performance concrete for in-situ monitoring[J]. Sensors and Actuators A: Physical. 2021, 331: 113049. https://doi.org/10.1016/j.sna.2021.113049 [24] Rahman M L, Malakooti A, Ceylan H, et al. A review ofelectrically conductive concrete heated pavement systemtechnology: From the laboratory to the full-scale implementation[J]. Construction and Building Materials. 2022, 329: 127139. https://doi.org/10.1016/j.conbuildmat.2022.127139 [25] Lee S J, You I, Kim S, et al. Self-sensing capacity of ultra-high-performance fiber-reinforced concrete containingconductive powders in tension[J]. Cement andConcrete Composites. 2022, 125: 104331. https://doi.org/10.1016/j.cemconcomp.2021.104331 [26] Yoo D Y, Kim S, Lee S H. Self-sensing capability of ultra-high-performance concrete containing steel fibersand carbon nanotubes under tension[J]. Sensors andActuators A: Physical. 2018, 276: 125-136. https://doi.org/10.1016/j.sna.2018.04.009 [27] Kim S, Jang Y S, Oh T, et al. Effect of crack width onelectromagnetic interference shielding effectiveness ofhigh-performance cementitious composites containingsteel and carbon fibers[J]. Journal of Materials Researchand Technology. 2022, 20: 359-372. https://doi.org/10.1016/j.jmrt.2022.07.041 [28] Han B G, Zhang L Q, Zhang C Y, et al. Reinforcementeffect and mechanism of carbon fibers to mechanicaland electrically conductive properties of cement-basedmaterials[J]. Construction and Building Materials. 2016, 125: 179-189. https://doi.org/10.1016/j.conbuildmat.2016.08.063 [29] Yoo D Y, Kang M C, Choi H J, et al. Electromagneticinterference shielding of multi-cracked high-performancefiber-reinforced cement composites-effects of matrixstrength and carbon fiber[J]. Construction andBuilding Materials. 2020, 261: 119949. https://doi.org/10.1016/j.conbuildmat.2020.119949 [30] Dong S F, Han B G, Ou J P, et al. Electrically conductivebehaviors and mechanisms of short-cut super-finestainless wire reinforced reactive powder concrete[J]. Cement and Concrete Composites. 2016, 72: 48-65. https://doi.org/10.1016/j.cemconcomp.2016.05.022 [31] Cecini D, Austin S A, Cavalaro S, et al. Acceleratedelectric curing of steel-fibre reinforced concrete[J]. Constructionand Building Materials. 2018, 189: 192-204. https://doi.org/10.1016/j.conbuildmat.2018.08.183 [32] 张高展, 葛竞成, 张春晓, 等. 养护制度对混凝土微结构形成机理的影响进展[J].材料导报. 2021, 35(15): 15125-15133. https://doi.org/10.11896/cldb.20060297 [33] Tian W, Qi B, Liu Y, et al. Early frost resistance and permeability properties of carbon fiber/cement-basedcomposite cured by ohmic heating under ultra-low temperature[J]. Construction and Building Materials. 2021, 282: 122729. https://doi.org/10.1016/j.conbuildmat.2021.122729 [34] Wang J, Long G, Xiang Y, et al. Influence of rapid curingmethods on concrete microstructure and properties: A review[J]. Case Studies in Construction Materials. 2022, 17: e01600. https://doi.org/10.1016/j.cscm.2022.e01600 [35] Shen P, Lu L, He Y, et al. The effect of curing regimeson the mechanical properties, nano-mechanical propertiesand microstructure of ultra-high performance concrete[J]. Cement and Concrete Research. 2019, 118: 1-13. https://doi.org/10.1016/j.cemconres.2019.01.004 [36] Li S, Zhang Y, Pan Y, et al. Effects of isothermal microwaveheating on the strength and microstructure ofultra-high performance concrete embedded with steelfibers[J]. Journal of Materials Research and Technology. 2021, 14: 1893-1902. https://doi.org/10.1016/j.jmrt.2021.07.092 [37] Zhang J, Yu R, Shui Z, et al. Hydration kinetics and microstructuredevelopment of ultra-high performance concrete(UHPC)subjected to microwave pre-curing[J]. Cementand Concrete Composites. 2022, 29: 104484. https://doi.org/10.1016/j.cemconcomp.2022.104484 [38] Hamada H, Alattar A, Tayeh B, et al. Influence of differentcuring methods on the compressive strength ofultra-high-performance concrete: A comprehensive review[J]. Case Studies in Construction Materials. 2022, 17: e01390. https://doi.org/10.1016/j.cscm.2022.e01390 [39] Ouyang M, Tian W, Liu Y, et al. Gradient power modifiedohmic heating curing to prepare hybrid carbon fibers/high performance concrete under deep-freeze lowtemperature[J]. Construction and Building Materials. 2022, 330: 127279. https://doi.org/10.1016/j.conbuildmat.2022.127279 [40] Chen Z, Liu Y, Wang M, et al. Effect of coarse aggregategrading optimization on temperature, thermalstress and compressive strength of carbon fiber-reinforcedconcrete by ohmic heating curing[J]. Journal ofBuilding Engineering. 2023, 66: 105882. https://doi.org/10.1016/j.jobe.2023.105882 [41] Cinar E, Uygunoglu T, Simsek B, et al. Effect of carbonblack on electrical curing of fresh concrete for cold regions[J]. Construction and Building Materials. 2020, 247: 118572. https://doi.org/10.1016/j.conbuildmat.2020.118572 [42] Liu Y, Wang M, Wang W. Electric induced curing ofgraphene/cement-based composites for structuralstrength formation in deep-freeze low temperature[J]. Materials & Design. 2018, 160: 783-793. https://doi.org/10.1016/j.matdes.2018.10.008 [43] Zhou Z, Zhang B, Wang M, et al. Early-age performanceof graphene-nanoplatelet-modified high-strength concretecured by electric thermal curing in severe cold regions[J]. Buildings. 2022, 12(2): 86. https://doi.org/10.3390/buildings12020086 [44] Liu Y, Wang M, Wang W. Ohmic heating curing ofelectrically conductive carbon nanofiber/cement-basedcomposites to avoid frost damage under severely lowtemperature[J]. Composites Part A: Applied Scienceand Manufacturing. 2018, 115: 236-246. https://doi.org/10.1016/j.compositesa.2018.10.008 [45] Liu Y, Tian W, Wang M, et al. Rapid strength formationof on-site carbon fiber reinforced high-performanceconcrete cured by ohmic heating[J]. Construction andBuilding Materials. 2020, 244: 118344. https://doi.org/10.1016/j.conbuildmat.2020.118344 [46] Tian W, Wang M, Liu Y, et al. Ohmic heating curing ofhigh content fly ash blended cement-based compositestowards sustainable green construction materials usedin severe cold region[J]. Journal of Cleaner Production. 2020, 276: 123300. https://doi.org/10.1016/j.jclepro.2020.123300 [47] Kim G M, Yang B J, Ryu G U, et al. The electricallyconductive carbon nanotube(CNT)/cement compositesfor accelerated curing and thermal cracking reduction[J]. Composite Structures. 2016, 158: 20-29. https://doi.org/10.1016/j.compstruct.2016.09.014 [48] Liu Y, Wang M, Tian W, et al. Ohmic heating curing ofcarbon fiber/carbon nanofiber synergistically strengtheningcement-based composites as repair/reinforcementmaterials used in ultra-low temperature environment[J]. Composites Part A: Applied Science and Manufacturing. 2019, 125: 105570. https://doi.org/10.1016/j.compositesa.2019.105570 [49] Tian W, Liu Y, Wang W. Multi-structural evolution of conductive reactive powder concrete manufactured byenhanced ohmic heating curing[J]. Cement and ConcreteComposites. 2021, 123: 104199. https://doi.org/10.1016/j.cemconcomp.2021.104199 [50] Wang S, Wang B, Zhu H, et al. Ultra-high performanceconcrete: Mix design, raw materials and curing regimes-A review[J]. Materials Today Communications. 2023, 35: 105468. https://doi.org/10.1016/j.mtcomm.2023.105468 [51] Sajid H U, Jalal A, Kiran R, et al. A survey on theeffects of deicing materials on properties of cementbasedmaterials[J]. Construction and Building Materials. 2022, 319: 126062. https://doi.org/10.1016/j.conbuildmat.2021.126062 [52] Xu W, Li Y, Li H, et al. Corrosion mechanism and damagecharacteristic of steel fiber concrete under the effectof stray current and salt solution[J]. Construction andBuilding Materials. 2022, 314: 125618. https://doi.org/10.1016/j.conbuildmat.2021.125618 [53] Chen C, Tian Z, Luo X, et al. Micro-nano-nanowire triplestructure-held PDMS superhydrophobic surfaces for robustultra-long-term icephobic performance[J]. ACS AppliedMaterials & Interfaces. 2022, 14(20): 23973-23982. https://doi.org/10.1021/acsami.2c02992 [54] Sadati S, Cetin K, Ceylan H, et al. Energy and thermalperformance evaluation of an automated snow and iceremoval system at airports using numerical modelingand field measurements[J]. Sustainable Cities and Society. 2018, 43: 238-250. https://doi.org/10.1016/j.scs.2018.08.021 [55] Sassani A, Arabzadeh A, Ceylan H, et al. Polyurethanecarbonmicrofiber composite coating for electrical heatingof concrete pavement surfaces[J]. Heliyon. 2019, 5(8): e02359. https://doi.org/10.1016/j.heliyon.2019.e02359 [56] Mirzanamadi R, Hagentoft C E, Johansson P, et al. Anti-icing of road surfaces using hydronic heating pavementwith low temperature[J]. Cold Regions Scienceand Technology. 2018, 145: 106-118. https://doi.org/10.1016/j.coldregions.2017.10.006 [57] Tan Y, Zhang C, Lv H, et al. Experimental and numericalanalysis of the critical heating strategy for hydronicheated snow melting airfield runway[J]. Applied ThermalEngineering. 2020, 178: 115508. https://doi.org/10.1016/j.applthermaleng.2020.115508 [58] Zhu X, Zhang Q, Du Z, et al. Snow-melting pavementdesign strategy with electric cable heating system balancingsnow melting, energy conservation, and mechanicalperformance[J]. Resources, Conservation and Recycling. 2022, 177: 105970. https://doi.org/10.1016/j.resconrec.2021.105970 [59] Gurer C, Fidan U, Korkmaz B E. Investigation of usingconductive asphalt concrete with carbon fiber additivesin intelligent anti-icing systems[J]. International Journalof Pavement Engineering. 2023, 24: 1-26. https://doi.org/10.1080/10298436.2022.2077941 [60] Sassani A, Arabzadeh A, Ceylan H, et al. Carbon fiberbasedelectrically conductive concrete for salt-free deicingof pavements[J]. Journal of Cleaner Production. 2018, 203: 799-809. https://doi.org/10.1016/j.jclepro.2018.08.315 [61] Shishegaran A, Daneshpajoh F, Taghavizade H, et al. Developing conductive concrete containing wire ropeand steel powder wastes for route deicing[J]. Constructionand Building Materials. 2020, 232: 117184. https://doi.org/10.1016/j.conbuildmat.2019.117184 [62] Jiao W, Sha A, Liu Z, et al. Optimization design andprediction of the snow-melting pavement based on electrical-thermal system[J]. Cold Regions Science andTechnology. 2022, 193: 103406. https://doi.org/10.1016/j.coldregions.2021.103406 [63] Zhang K, Han B, Yu X. Nickel particle based electricalresistance heating cementitious composites[J]. ColdRegions Science and Technology. 2011, 69(1): 64-69. https://doi.org/10.1016/j.coldregions.2011.07.002 [64] Kim G M, Naeem F, Kim H K, et al. Heating and heatdependentmechanical characteristics of CNT-embeddedcementitious composites[J]. Composite Structures. 2016, 136: 162-170. https://doi.org/10.1016/j.compstruct.2015.10.010 [65] Hong L, Zhao Y. The electrical properties and snowmelting of graphite slurry infiltrated steel fiber concrete[J]. Journal of Wuhan University of Technology-Mater. 2010, 25(4): 609-612. https://doi.org/10.1007/s11595-010-0054-7 [66] Gwon S, Kim H, Shin M. Self-heating characteristics ofelectrically conductive cement composites with carbonblack and carbon fiber[J]. Cement and Concrete Composites. 2023, 137: 104942. https://doi.org/10.1016/j.cemconcomp.2023.104942 [67] 孟多. 定形相变材料的制备与建筑节能应用[D]. 大连: 大连理工大学, 2010. https://kns.cnki.net/kcms2/article/abstract?v=fvaKTeWl6eL7aMw2SInHAuczH9Pv3NXP9aoH7sRmpM8BpIQMDV9fXD6oDuNZuIQUz04kg1lgeKo7z55C1Z_gEjzkXbZ4mJFcZexCntPju8vkSNl5T0mZUTcFvYw1_a1CKhL0lhd3s1fgF2oqnBSePPIJXXiUfqkJ9Ix4LmTcV21wbxkPHxTMcA==&uniplatform=NZKPT&language=CHS [68] Johnsson F, Kjarstad J, Rootzen J. The threat to climatechange mitigation posed by the abundance of fossil fuels[J]. Climate Policy. 2019, 19(2): 258-274. https://doi.org/10.1080/14693062.2018.1483885 [69] 杨慧慧, 曾立, 汤波, 等. 谷电利用复合石蜡蓄热材料的制备及供暖墙体构造实验[J]. 储能科学与技术. 2022, 11(01): 19-29. https://doi.org/10.19799/j.cnki.2095-4239.2021.0358 [70] Bogdanov D, Gulagi A, Fasihi M, et al. Full energy sectortransition towards 100% renewable energy supply: Integrating power, heat, transport and industry sectorsincluding desalination[J]. Applied Energy. 2021, 283: 116273. https://doi.org/10.1016/j.apenergy.2020.116273 [71] Yin S W, Shi Y L, Tong L G, et al. Heating characteristicsand economic analysis of a controllable on-demandheating system based on off-peak electricity energystorage[J]. Journal of Thermal Science. 2020, 29: 343-351. https://doi.org/10.1007/s11630-019-1258-6 [72] Zhang F, Jiao Y, Yin X. Efficiency analysis and heatingstructure design of high power electromagnetic thermalenergy storage system[C]. In: 18th International Conferenceon Electrical Machines and Systems(ICEMS). IEEE, 2015, 458-462. https://doi.org/10.1109/ICEMS.2015.7385078 [73] Zhang Q L, Zhang L, Nie J Z, et al. Techno-economic analysisof air source heat pump applied for space heatingin northern China[J]. Applied Energy. 2017, 207: 533-542. https://doi.org/10.1016/j.apenergy.2017.06.083 [74] 卞一帆, 谢丽蓉, 杨建宾, 等. 计及弃风的“电气互补-冷热联供”模式研究[J]. 太阳能学报. 2022, 43(04): 311-317. https://doi.org/10.19912/j.0254-0096.tynxb.2020-0614 [75] Huang M Y, He W, Incecik A, et al. Phase change materialheat storage performance in the solar thermalstorage structure employing experimental evaluation[J]. Journal of Energy Storage. 2022, 46: 103638. https://doi.org/10.1016/j.est.2021.103638 [76] Yun B Y, Yang S, Cho H M, et al. Thermal storageeffect analysis of floor heating systems using latentheat storage sheets[J]. International Journal of PrecisionEngineering and Manufacturing-Green Technology. 2019, 6: 799-807. https://doi.org/10.1007/s40684-019-00131-3 [77] Heng W, Wang Z, Wu Y. Experimental study on phasechange heat storage floor coupled with air source heatpump heating system in a classroom[J]. Energy andBuildings. 2021, 251: 111352. https://doi.org/10.1016/j.enbuild.2021.111352 [78] Guo J, Dong J, Wang H, et al. On-site measurement ofthe thermal performance of a novel ventilated thermalstorage heating floor in a nearly zero energy building[J]. Building and Environment. 2021, 201: 107993. https://doi.org/10.1016/j.buildenv.2021.107993 [79] Xie P L, Huang H L, He Y C, et al. Heat storage ofparaffin-based composite phase change materials andtheir temperature regulation of underground power cablesystems[J]. Materials. 2021, 14(4): 740. https://doi.org/10.3390/ma14040740 [80] He Y J, Shao Y W, Xiao Y Y, et al. Multifunctionalphase change composites based on elastic MXene/silvernanowire sponges for excellent thermal/solar/electricenergy storage, shape memory, and adjustable electromagneticinterference shielding functions[J]. ACS AppliedMaterials & Interfaces. 2022, 14(4): 6057-6070. https://doi.org/10.1021/acsami.1c23303 [81] Shoeibi S, Kargarsharifabad H, Mirjalily S, et al. Acomprehensive review of nano-enhanced phase changematerials on solar energy applications[J]. Journal ofEnergy Storage. 2022, 50: 104262. https://doi.org/10.1016/j.est.2022.104262