2025年7月8日 星期二
构建可衔接碳市场的模块化核电碳账户理论框架
Constructing A Modular Nuclear Power Carbon Account Theoretical Framework that can Connect with Carbon Markets
摘要

核电碳账户是核电衔接碳市场等低碳转型市场化政策工具和实现核电碳减排效益的微观基础, 构建可衔接碳市场的核电碳账户理论框架是实现核电碳减排效益的科学前提。本研究基于全生命周期, 提出了涵盖建设期、运营期和退役期的模块化核电碳账户框架, 设定了不同模块的核算边界、数据来源、核算方法和评价指标。进一步, 将核电碳账户与区域电网碳账户相嵌套, 分析了纳入核电碳账户对电网碳排放因子的降低效应。最后, 提出了应用“绿色核电证书”衔接碳市场的低碳转型市场化政策工具。本文提出的模块化核电碳账户框架及其与碳市场的衔接机制对于管理我国核电企业碳资产、明晰核电全生命周期减排贡献以及通过市场机制实现减排效益提供了科学依据。

Abstract

The nuclear power carbon account serves as the micro-foundation for integrating nuclear power into low-carbon transition market-based policy tools, such as carbon markets, thereby achieving carbon emission reduction benefits. Developing a theoretical framework for the nuclear power carbon account connected to the carbon markets is a scientific prerequisite for realizing these benefits. This study, based on a lifecycle perspective, proposes a modular nuclear power carbon account framework encompassing the construction, operation, and decommissioning phases. The framework defines the accounting boundaries, data sources, accounting methods, and evaluation indicators for each module. Furthermore, the study nests the nuclear power carbon account within the regional power grid carbon account, analyzing the reduction effect of incorporating the nuclear power carbon account on the power grid carbon emission factor. Finally, it proposes the application of a "Green Nuclear Power Certificate" as a market-based policy tool for low-carbon transition connected to the carbon markets. The modular nuclear power carbon account framework and its connection mechanism with the carbon markets proposed in this paper provide a scientific basis for managing the carbon assets of nuclear power enterprises in China, clarifying the emission reduction contributions throughout the nuclear power lifecycle, and achieving emission reduction benefits through market mechanisms.  

DOI10.48014/fdg.20250502001
文章类型研究性论文
收稿日期2025-05-02
接收日期2025-06-09
出版日期2025-06-28
关键词核电碳账户, 碳市场, 电网碳账户, 绿色核电证书
KeywordsNuclear power carbon account, carbon markets, power grid carbon account, green nuclear power certificate
作者刘博杰1,2, 李昊1, 钟诚3, 尚鑫1, 胡江1, 王亦妙2, 陈操操4, 李慧2, 刘耕源2,*
AuthorLIU Bojie1,2, LI Hao1, ZHONG Cheng3, SHANG Xin1, HU Jiang1, WANG Yimiao2, CHEN Caocao4, LI Hui2, LIU Gengyuan2,*
所在单位1. 中国核电工程有限公司, 北京 100840
2. 北京师范大学环境学院, 区域环境安全全国重点实验室, 北京 100875
3. 中国地质大学 (北京) 经济管理学院, 北京 100083
4. 北京市应对气候变化管理事务中心, 北京 100086
Company1. China Nuclear Power Engineering Co. , Ltd, Beijing 100840, China
2. State Key Laboratory of Regional Environment and Sustainability, School of Environment, Beijing Normal University, Beijing 100875, China
3. School of Economy and Management, China University of Geosciences (Beijing) , Beijing 100083, China
4. Beijing Climate Change Management Affairs Center, Beijing 100086, China
浏览量4
下载量1
基金项目国家自然科学基金重点项目(52430003)、中央高校基本科研业务费专项资金和中国核工业集团有限公司青年科技创新“菁英人才”项目(KY24030)资助。
参考文献[1] Liu B, Liu G, Li H, et al. Would widespread adoption of third-generation nuclear power HPR1000 enhance the mitigation of net greenhouse gas emissions?[J]. iScience, 2025, 28(3): 111923.
https://doi.org/10.1016/j.isci.2025.111923.
[2] IAEA. The database on nuclear power reactors [EB/ OL]. [2025-01-23].
https://pris.iaea.org/pris/.
[3] Schneider M, Froggatt A, Hazemann J, et al. The World Nuclear Industry Status Report 2024[EB/OL]. [2025- 01-23].
https://www.worldnuclearreport.org/World-Nuclear-Industry-Status-Report-2024.
[4] United States Nuclear Regulatory Commission. ADVANCE Act(Accelerating Deployment of Versatile, Advanced Nuclear for Clean Energy Act of 2024)[EB/ OL]. [2025-01-23].
https://www.nrc.gov/about-nrc/governing-laws/advance-act.html.
[5] IEA. Nuclear power and secure energy transitions: from today’s challenges to tomorrow’s clean energy systems [EB/ OL]. [2025-01-23].
https://iea.blob.core.windows.net/assets/016228e1-42bd-4ca7-bad9-a227c4a40b04/NuclearPowerandSecureEnergyTransitions.pdf.
[6] 魏一鸣, 韩融, 余碧莹, 等. 全球能源系统转型趋势与低碳转型路径———来自于IPCC第六次评估报告的证据[J]. 北京理工大学学报(社会科学版), 2022, 24(4): 163-188.
https://doi.org/10.15918/j.jbitss1009-3370.2022.1170.
[7] 国家核安全局. 2024 年我国大陆核电机组情况[EB/OL].(2025-01-07)[2025-02-03].
https://nnsa.mee.gov.cn/ywdt/hyzx/202501/t20250107_1100142.html.
[8] Liu B, Peng B, Lu F, et al. Critical review of nuclear power plant carbon emissions[J]. Frontiers in Energy Research, 2023, 11: 1147016.
https://doi.org/10.3389/fenrg.2023.1147016.
[9] Lee H, Calvin K, Dasgupta D, et al. Climate change 2023 synthesis report summary for policymakers[EB/OL].(2023-06-26)[2025-02-03].
https://ntrs.nasa.gov/citations/20230009518.
[10] Verma A, Ahmad A, Giovannini F. Nuclear energy, ten years after Fukushima[J]. Nature, 2021, 591(7849): 199-201.
https://doi.org/10.1038/d41586-021-00580-4.
[11] 卢乐书. 碳账户[M]. 北京: 中信出版集团, 2023.
[12] 刘红飞. 衢州市基于碳账户改革的“双碳”实践探索[J]. 政策瞭望, 2023(9): 20-22.
https://doi.org/10.3969/j.issn.1673-7296.2023.09.007.
[13] 孙传旺, 魏晓楠. “双碳”背景下我国碳账户建设的模式、经验与发展方向[J]. 东南学术, 2022(6): 197-207.
https://doi.org/0.13658/j.cnki.sar.2022.06.017.
[14] 杨天琦, 韦中华, 朱朝勇, 等. 基于电力大数据的企业碳账户构建及其应用研究[A].中国电力企业管理创新实践(2022年)[C]. 北京: 中国电力出版社, 2024: 101-104.
https://doi.org/10.26914/c.cnkihy.2024.001153.
[15] 郑紫璇, 刘红飞. “双碳”目标下的工业碳账户发展研究[J]. 现代工业经济和信息化, 2023, 13(10): 157- 161, 165.
https://doi.org/10.16525/j.cnki.14-1362/n.2023.10.052.
[16] 烟台市人民政府. 服务双碳目标落地,国网烟台供电公司开通首个供应链企业碳账户[EB/OL].(2022-05-14)[2025-01-23].
https://www.yantai.gov.cn/art/2022/5/14/art_41950_2976156.html.
[17] Novata. Simplified carbon accounting[EB/OL]. [2025- 01-23].
https://www.novata.com/carbon-data-management/.
[18] COZERO. Calculate your organization’s carbon footprint[EB/OL]. [2025-01-23].
https://www.cozero.io/solutions/corporate-carbon-footprint.
[19] Carbonzero. GHG inventory services[EB/OL]. [2025- 01-23].
https://carbonzero-1eaee7.webflow.io/greenhouse-gas-inventories.
[20] 王可, 董战峰. 国际碳信息披露实践进展与借鉴[J]. 中国环境管理, 2024, 16(6): 41-51.
https://doi.org/10.16868/j.cnki.1674-6252.2024.06.041.
[21] 孙浩, 栾家伟. 碳账户建设的国内外探索与经验借鉴[J]. 金融纵横, 2023(8): 38-43.
[22] 中国人民银行. 青海: 碳账户金融支持企业绿色低碳转型发展[EB/OL].(2024-11-01)[2025-01-23].
http://www.pbc.gov.cn/goutongjiaoliu/113456/113475/5495101/index.html.
[23] Sun J, Dong F. Decomposition of carbon emission reduction efficiency and potential for clean energy power: evidence from 58 countries[J]. Journal of Cleaner Production, 2022, 363: 132312.
https://doi.org/10.1016/j.jclepro.2022.132312.
[24] Hao Y, Chen P, Li X. Testing the environmental kuznets curve hypothesis: the dynamic impact of nuclear energy on environmental sustainability in the context of economic globalization[J]. Energy Strategy Reviews, 2022, 44: 100970.
https://doi.org/10.1016/j.esr.2022.100970.
[25] Naimoˇglu M. The impact of nuclear energy use, energy prices and energy imports on CO2 emissions: evidence from energy importer emerging economies which use nuclear energy[J]. Journal of Cleaner Production, 2022, 373: 133937.
https://doi.org/10.1016/j.jclepro.2022.133937.
[26] 姜子英, 潘自强, 邢江, 等. 中国核电能源链的生命周期温室气体排放研究[J]. 中国环境科学, 2015(11): 3502-3510.
https://doi.org/10.3969/j.issn.1000-6923.2015.11.040.
[27] Gibon T, Hahn Menacho A. Parametric life cycle assessment of nuclear power for simplified models[J]. Environmental Science & Technology, 2023, 57(38): 14194-14205.
https://doi.org/10.1021/acs.est.3c03190.
[28] Pomponi F, Hart J. The greenhouse gas emissions of nuclear energy-Life cycle assessment of a European pressurised reactor[J]. Applied Energy, 2021, 290: 116743.
https://doi.org/10.1016/j.apenergy.2021.116743.
[29] 穆献中, 徐琴, 刘宇, 等. 基于生命周期评价的核电环境影响分析[J]. 安全与环境学报, 2022, 22(5): 2775-2781.
https://doi.org/10.13637/j.issn.1009-6094.2021.1289.
[30] 宋华, 韩梦玮, 于亢亢, 等. 数字技术如何助力供应链碳减排[J]. 南开管理评论, 2024, 27(1): 27-39.
https://doi.org/10.3969/j.issn.1008-3448.2024.01.004.
[31] 毛涛. 发达国家供应链脱碳布局及其应对研究[J]. 太平洋学报, 2024, 32(3): 62-74.
https://doi.org/10.14015/j.cnki.1004-8049.2024.03.005.
[32] 高原, 刘耕源, 谢涛, 等. 碳责任账户的目标原则、分配逻辑与框架构建:账户建立[J]. 中国环境管理, 2023, 15(1): 19-27.
https://doi.org/10.16868/j.cnki.1674-6252.2023.01.019.
[33] NEA. COP28 recognises the critical role of nuclear energy for reducing the effects of climate change[EB/ OL].(2023-12-21)[2025-01-23].
https://www.oecdnea.org/jcms/pl_89153/cop28-recognises-the-criticalrole-of-nuclear-energy-for-reducing-the-effects-of-climate-change.
[34] Nuclear Energy Institute. Zero-emission credits[R]. Washington DC: Nuclear Energy Institute, 2018.
[35] Haratyk G. Early nuclear retirements in deregulated US markets: causes, implications and policy options[J]. Energy Policy, 2017, 110: 150-166.
https://doi.org/10.1016/j.enpol.2017.08.023.
[36] GAIN. State subsidies for zero-emissions credits [EB/OL]. [2025-01-23].
https://gain.inl.gov/our-work/existing-nuclear-fleet/state-subsidies-for-zero-emissions-credits/.
[37] BrucePower. Clean energy credits(CECs)[EB/OL]. [2025-01-23].
https://www.brucepower.com/cec/.
[38] IESO. Power data[EB/OL]. [2025-01-23].
https://ieso.ca/power-data.
[39] 张光耀. 欧盟可再生能源法律和政策现状及展望[J]. 中外能源, 2020, 25(1): 25-32.
[40] CARBON MARKET WATCH . FAQ: The EU Carbon Border Adjustment Mechanism(CBAM)[EB/OL].(2024-07-30)[2025-01-23].
https://carbonmarketwatch.org/2024/07/30/faq-the-eu-carbon-border-adjustmentmechanism-cbam/.
[41] CDP. Disclose data [EB/OL]. [2025-01-23].
https://www.cdp.net/en/disclose.
[42] VEYT. Nuclear fallout: first French atomic GOs are on the market [EB/OL].(2024-06-05)[2025-01-23].
https://www.veyt.com/articles/nuclear-fallout-first-french-atomic-gos-are-on-the-market.
[43] Voorspools K R, Brouwers E A, D D'haeseleer W. Energy content and indirect greenhouse gas emissions embedded in ‘emission-free’power plants: results for the low countries[J]. Applied Energy, 2000, 67(3): 307-330.
https://doi.org/10.1016/S0306-2619(00)00016-7.
[44] Bruckner T, Bashmakov I A, Mulugetta Y, et al. Chapter 7- Energy systems. In Climate Change 2014: Mitigation of Climate Change. IPCC Working Group III Contribution to AR5[M]. Cambridge University Press, 2014.
[45] 田佩宁, 梁肖, 官雨捷, 等. 中国电网全生命周期碳排放及发电结构转型路径规划研究[J]. 气候变化研究进展, 2024, 20(1): 97-106.
https://doi.org/10.12006/j.issn.1673-1719.2023.177.
[46] 宁礼哲, 张哲, 蔡博峰, 等. 2020年中国区域和省级电网温室气体排放因子研究[J]. 环境工程, 2023, 41(3): 222-228.
https://doi.org/10.13205/j.hjgc.202303030.
[47] 魏夕凯, 谭效时, 阮嘉桐, 等. 2005—2021年区域和省级电网碳排放因子研究[J]. 气候变化研究进展, 2024, 20(3): 337-350.
https://doi.org/10.12006/j.issn.1673-1719.2023.276.
[48] 蔡博峰, 赵良, 张哲, 等. 中国区域电网二氧化碳排放因子研究(2023)[R].北京: 生态环境部环境规划院, 2023.
[49] 国家能源局. 国家能源局关于2022年度全国可再生能源电力发展监测评价结果的通报[EB/OL].(2023-09-07)[2025-01-23].
https://zfxxgk.nea.gov.cn/2023-09/07/c_1310741874.htm.
[50] Wang L, Wang Y, Du H, et al. A comparative life-cycleassessment of hydro-, nuclear and wind power: A Chinastudy[J]. Applied Energy, 2019, 249: 37-45.
https://doi.org/10.1016/j.apenergy.2019.04.099.
[51] 张廷克, 李闽榕, 白云生. 中国核能发展报告(2024)[M]. 北京: 社会科学文献出版社, 2024.
[52] 刘博杰, 陈思宇, 钟诚, 等. 将核电纳入我国低碳转型市场化政策工具体系研究:Ⅱ. 经验与路径[J].北京师范大学学报(自然科学版), 2025, 61(2): 198-206.
[53] 吕希琛, 田银凤, 田世海, 等. MRV机制下碳数据质量监管多主体行为决策研究———基于区块链技术赋能视角[J/OL]. 中国管理科学, 1-14[2025-05-27].
https://doi.org/10.16381/j.cnki.issn1003-207x.2024.0953.
[54] 王勇. 欧盟电池与废旧电池法对我国立法与行业发展的启示[J]. 储能科学与技术, 2025, 14(02): 871-875.
https://doi.org/10.19799/j.cnki.2095-4239.2025.0014.
引用本文刘博杰, 李昊, 钟诚, 等. 构建可衔接碳市场的模块化核电碳账户理论框架[J]. 发展地理学前沿, 2025, 4(2): 39-53.
CitationLIU Bojie, LI Hao, ZHONG Cheng, et al. Constructing a modular nuclear power carbon account theoretical framework that can connect with carbon markets[J]. Frontiers of Development Geography, 2025, 4(2): 39-53.