参考文献
[1] Ting-ting Zhu, Zhong-xian Su, Wen-xia Lai, et al. Insights into the fate and removal of antibiotics and antibiotic resistance genes using biological wastewater treatment technology[J]. Science of The Total Environment, 2021, 776: 145906. https://doi.org/10.1016/j.scitotenv.2021.145906 [2] Adriana Osińska, Ewa Korzeniewska, Monika Harnisz, et al. Small-scale wastewater treatment plants as a source of the dissemination of antibiotic resistance genes in the aquatic environment[J]. Journal of Hazardous Materials, 2020, 381: 121221. https://doi.org/10.1016/j.jhazmat.2019.121221 [3] Célia M. Manaia, Jaqueline Rocha, Nazareno Scaccia, et al. Antibiotic resistance in wastewater treatment plants: Tackling the black box[J]. Environment International, 2018, 115: 312-324. https://doi.org/10.1016/j.envint.2018.03.044 [4] Zhidong Wei, Junying Liu, Wenfeng Shangguan, A review on photocatalysis in antibiotic wastewater: Pollutant degradation and hydrogen production[J]. Chinese Journal of Catalysis, 2020, 41: 10, 1440-1450. https://doi.org/10.1016/s1872-2067(19)63448-0 [5] Jinyan Cao, Leiduo Lai, Bo Lai, et al. Degradation of tetracycline by peroxymonosulfate activated with zerovalent iron: Performance, intermediates, toxicity and mechanism[J]. Chemical Engineering Journal, 2019, 364: 45-56. https://doi.org/10.1016/j.cej.2019.01.113 [6] Jianlong Wang, Run Zhuan. Degradation of antibiotics by advanced oxidation processes: An overview[J]. Science of The Total Environment, 2020, 701: 135023. https://doi.org/10.1016/j.scitotenv.2019.135023 [7] Hua Wang, Xiufeng Lang, Rui Hao, et al. Facet-defined AgCl nanocrystals with surface-electronic-structuredominated photoreactivities[J]. Nano Energy, 2016, 19: 8-16. https://doi.org/10.1016/j.nanoen.2015.11.022 [8] Wenqing Guo, Tao Guo, Yuanzheng Zhang, et al. Progress on simultaneous photocatalytic degradation of pollutants and production of clean energy: A review[J]. Chemosphere, 2023, 339: 139486. https://doi.org/10.1016/j.chemosphere.2023.139486 [9] Potlako J. Mafa, Alex T. Kuvarega, Bhekie B. Mamba, Bulelwa Ntsendwana, Photoelectrocatalytic degradation of sulfamethoxazole on g-C3N4/BiOI/EG p-n heterojunction photoanode under visible light irradiation[J]. Applied Surface Science, 2019, 483: 506-520. https://doi.org/10.1016/j.apsusc.2019.03.281 [10] Mahmoud Nasrollahzadeh, Mohaddeseh Sajjadi, Siavash Iravani, et al. Green-synthesized nanocatalysts and nanomaterials for water treatment: Current challenges and future perspectives[J]. Journal of Hazardous Materials, 2021, 401: 123401. https://doi.org/10.1016/j.jhazmat.2020.123401 [11] 李宇涵, 任自藤, 段有雨, 等. 锡酸锌基光催化材料研究进展[J]. 稀有金属, 2023, 47(01): 73-89. https://doi.org/10.13373/j.cnki.cjrm.XY22060007 [12] 赵子龙, 闫蕊, 曲阳, 等. 三嗪类污染物光催化降解研究进展[J]. 稀有金属, 2023, 47(01): 90-104. https://doi.org/10.13373/j.cnki.cjrm.XY22080015 [13] Caroline H. Claudino, Maria Kuznetsova, Bárbara S. Rodrigues, et al. Facile one-pot microwave-assisted synthesis of tungsten-doped BiVO4/WO3 heterojunctions with enhanced photocatalytic activity[J]. Materials Research Bulletin, 2020, 125: 110783. https://doi.org/10.1016/j.materresbull.2020.110783 [14] Reda M. Mohamed, Ahmed Shawky. Improved photocatalytic oxidation of ciprofloxacin by NiS-coupled WO3 nanorods synthesized by solvothermal method under visible light[J]. Ceramics International, 2023, 49(13): 21855-21863. https://doi.org/10.1016/j.ceramint.2023.04.008 [15] Javier Fragoso, Davide Barreca, Lorenzo Bigiani, et al. Chiara Maccato, Enhanced photocatalytic removal of NOx gases by β-Fe2O3/CuO and β-Fe2O3/WO3 nanoheterostructures[ J]. Chemical Engineering Journal, 2022, 430(2): 132757. https://doi.org/10.1016/j.cej.2021.132757 [16] Junchen Zhou, Shiwei Lin, Yongjun Chen, et al. Facile morphology control of WO3 nanostructure arrays with enhanced photoelectrochemical performance[J]. Applied Surface Science, 2017, 403: 274-281. https://doi.org/10.1016/j.apsusc.2017.01.209 [17] C. Guillén, J. Herrero, Amorphous WO3-x thin films with color characteristics tuned by the oxygen vacancies created during reactive DC sputtering[J]. Journal of Materials Science & Technology, 2021, 78: 223-228. https://doi.org/10.1016/j.jmst.2020.11.036 [18] Chakkaphan Wattanawikkam, Atipong Bootchanont, Porramain Porjai, et al. Phase evolution in annealed Ni-doped WO3 nanorod films prepared via a glancing angle deposition technique for enhanced photoelectrochemical performance[J]. Applied Surface Science, 2022, 584: 152581. https://doi.org/10.1016/j.apsusc.2022.152581 [19] Liang Zhou, Yunfeng Li, Sijia Yang, et al. Preparation of novel 0D/2D Ag2WO4/WO3 Step-scheme heterojunction with effective interfacial charges transfer for photocatalytic contaminants degradation and mechanism insight[J]. Chemical Engineering Journal, 2021, 420(3): 130361. https://doi.org/10.1016/j.cej.2021.130361 [20] Hua Wang, Tingting You, Weiwei Shi, et al. Au/TiO2/ Au as a Plasmonic Coupling Photocatalyst[J]. Journal of Physical Chemistry C, 2012, 116(10): 6490-6494. https://doi.org/10.1021/jp212303q [21] Meysam Tayebi, Ahmad Tayyebi, Byeong-Kyu Lee, et al. The effect of silver doping on photoelectrochemical(PEC)properties of bismuth vanadate for hydrogen production[J]. Solar Energy Materials and Solar Cells, 2019, 200: 109943. https://doi.org/10.1016/j.solmat.2019.109943 [22] Yuelin Wei, Yunfang Huang, Yu Fang, et al. Hollow mesoporous TiO2/WO3 sphere heterojunction with high visible-light-driven photocatalytic activity[J]. Materials Research Bulletin, 2019, 119: 110571. https://doi.org/10.1016/j.materresbull.2019.110571 [23] Hua Wang, Yusong Bai, Hao Zhang, et al. CdS Quantum Dots-Sensitized TiO2 Nanorod Array on Transparent Conductive Glass Photoelectrodes[J]. The Journal of Physical Chemistry C, 2010, 114(39): 16451-16455. https://doi.org/10.1021/jp104208z [24] Dandan Yu, Jie Bai, Haiou Liang, et al. Fabrication of a novel visible-light-driven photocatalyst Ag-AgI-TiO2 nanoparticles supported on carbon nanofibers[J]. Applied Surface Science, 2015, 349: 241-250. https://doi.org/10.1016/j.apsusc.2015.05.019 [25] Chunyun Hou, Jiangwei Yu, Jinrui Ding, et al. An effective route for growth of WO3/BiVO4 heterojunction thin films with enhanced photoelectrochemical performance[ J]. Journal of Industrial and Engineering Chemistry, 2021, 104: 146-154. https://doi.org/10.1016/j.jiec.2021.08.018 [26] Ligang Xia, Jing Bai, Jinhua Li, et al. A highly efficient BiVO4/WO3/W heterojunction photoanode for visiblelight responsive dual photoelectrode photocatalytic fuel cell[J]. Applied Catalysis B: Environmental, 2016, 183: 224-230. https://doi.org/10.1016/j.apcatb.2015.10.050 [27] Dyovani Coelho, João Pedro R. S. Gaudêncio, Saulo A. Carminati, et al. Bi electrodeposition on WO3 photoanode to improve the photoactivity of the WO3/BiVO4 heterostructure to water splitting[J]. Chemical Engineering Journal, 2020, 399: 125836. https://doi.org/10.1016/j.cej.2020.125836 [28] Vijay S. Kumbhar, Hyeonkwon Lee, Jaewon Lee, et al. Interfacial growth of the optimal BiVO4 nanoparticles onto self-assembled WO3 nanoplates for efficient photoelectrochemical water splitting[J]. Journal of Colloid and Interface Science, 2019, 557: 478-487. https://doi.org/10.1016/j.jcis.2019.09.037 [29] S. Sadhasivam, N. Anbarasan, A. Gunasekaran, et al. Bi2S3 entrenched BiVO4/WO3 multidimensional triadic photoanode for enhanced photoelectrochemical hydrogen evolution applications[J]. International Journal of Hydrogen Energy, 2022, 47(32): 14528-14541. https://doi.org/10.1016/j.ijhydene.2022.02.199 [30] Siyan Li, Yiwu Tang, Min Wang, et al. NiO/g-C3N42D/2D heterojunction catalyst as efficient peroxymonosulfateactivators toward tetracycline degradation: Characterization, performance and mechanism [J]. Journal of Alloys and Compounds, 2021, 880: 160547. https://doi.org/10.1016/j.jallcom.2021.160547 [31] Xiaoyu Qiu, Jiaming Li, Yiyang Zhao, et al. The formationof Z-scheme AgI/BiOBr heterojunction and its excellentphotocatalytic performance[J]. Journal of Alloysand Compounds, 2023, 967: 171739. https://doi.org/10.1016/j.jallcom.2023.171739