摘要 | 【背景】氮氧化物 (NOX) 是我国优先控制的主要空气污染物之一, 而植物在清除空气中氮氧化物方面具有重要贡献。植物叶际微生物能否提高空气中氮氧化物的清除效率仍是待解之谜, 因此, 分离筛选高效转化空气中氮氧化物的叶际微生物至关重要。【方法】本研究采用氮氧化物选择性富集培养的方法, 从常春藤叶际微生物培养物中分离筛选获得一株高效转化氮氧化物的功能菌株, 编号LZY1。通过16S rRNA基因测序、生理生化鉴定, 确定菌株的分类, 并优化其生长条件(温度、pH) , 测试其对氮氧化物的转化能力。此外, 采用烟雾箱实验, 验证该菌株对空气中氮氧化物的消减效果。【结果】研究结果表明, 菌株LZY1能够以二氧化氮 (NO2) 为唯一氮源生长。16S rRNA基因测序结果显示, 该菌株与弯曲普里斯特氏菌 (Priestia flexa) 亲缘关系最近 (相似性100%) ; 该菌株孢囊未膨大, 具有硝酸盐还原、催化酶活性、运动能力、柠檬酸盐利用和明胶液化能力, 但不进行VP反应 (Voges-Proskauer test) , 且不具备厌氧生长能力, 与Priestia flexa的代谢特性一致。菌株LZY1的适宜生长条件为30℃、pH4. 0~6. 0, 并能在较宽的pH范围 (4. 0~9. 0) 内生长。烟雾箱实验结果表明, 该菌株对空气中氮氧化物的消减速率显著高于对照组, 能够较快降低空气中NO2的浓度。【结论】从植物叶际分离筛选的LZY1菌株为Priestia flexa, 具有高效转化空气中氮氧化物的特性, 对环境的适应能力较强。研究结果为氮氧化物污染空气的生物修复提供了参考, 为大气污染治理提供了新思路。 |
Abstract | [Background] Nitrogen oxides (NOX) are among the first major air pollutants to be regulated in China, and plants play an important role in their atmospheric NOX removal. However, whether phyllosphere microorganisms can enhance the efficiency of atmospheric NOX removal remains an open question. Therefore, the isolation and screening of phyllosphere microorganisms with high NOX conversion efficiency are of great significance. [Methods] In this study, a nitrogen oxide-selective enrichment culture method was used to isolate and screen a functional strain with high NOX conversion efficiency from the phyllosphere of Hedera helix, designated as strain LZY1. The taxonomic classification of this strain was determined through 16S rRNA gene sequencing and physiological and biochemical identification. Additionally, its growth conditions (temperature, pH) were optimized, and its NOX conversion capacity was assessed. Furthermore, an exposure experiment was conducted to verify the strain’s ability to reduce atmospheric NOX. [Results] The results showed that strain LZY1 could grow using nitrogen dioxide (NO2) as its sole nitrogen source. 16S rRNA gene sequencing revealed that this strain was most closely related to Priestia flexa (100% similarity) . The strain exhibited a colony diameter of<1 cm, no swollen sporangia, and possessed nitrate reduction ability, catalase activity, motility, citrate utilization, and gelatin liquefaction capability. However, it did not undergo the Voges-Proskauer (VP) reaction and lacked anaerobic growth capability, consistent with the metabolic characteristics of Priestia flexa. The optimal growth conditions for strain LZY1 were 30℃ and pH 4. 0-6. 0, with the ability to grow within a broad pH range (4. 0-9. 0) . The exposure experiment demonstrated that this strain significantly accelerated the reduction of atmospheric NO2 concentration compared to the control group. [Conclusion] Strain LZY1, isolated from the phyllosphere of Hedera helix, exhibits a high efficiency in converting atmospheric NOX and demonstrated strong environmental adaptability. These findings provide a reference for the bioremediation of NOX-polluted air and offer new insights into atmospheric pollution control. |
DOI | 10.48014/pceep.20250224003 |
文章类型 | 研究性论文 |
收稿日期 | 2025-02-24 |
接收日期 | 2025-03-08 |
出版日期 | 2025-06-28 |
关键词 | 氮氧化物, 空气污染防治, 叶际微生物, 弯曲普里斯特氏菌, 生物修复 |
Keywords | Nitrogen oxides, air pollution control, phyllosphere microbiota, Priestia flexa, bioremediation |
作者 | 刘子嫣1,2, 闫高俊1,3, 乔翅嵩1,4, 刘佳瑜1,5, 白志辉1,2,3,* |
Author | LIU Ziyan1,2, YAN Gaojun1,3, QIAO Chisong1,4, LIU Jiayu1,5, BAI Zhihu1,2,3,* |
所在单位 | 1. 中国科学院生态环境研究中心, 北京 100085 2. 中国科学院大学中丹学院, 北京 100049 3. 中国科学院大学资源与环境学院, 北京 101314 4. 郑州大学河南先进技术研究院, 郑州 450001 5. 中国地质大学 (北京) , 北京 100083 |
Company | 1. Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing 100085, China 2. Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China 3. College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 101314, China 4. Zhengzhou University, Henan Institute of Advanced Technology, Zhengzhou 450001, China 5. China University of Geosciences (Beijing) , Beijing 100083, China |
浏览量 | 26 |
下载量 | 4 |
基金项目 | 国家自然科学基金项目(42177111,42377126)、中国科学院国际合作伙伴计划(121311KYSB20200017)资助 |
参考文献 | [1] 刘小华. 基于氮氧化物危害及其防治对策[J/OL]. 低碳世界, 2017(09): 8-9. https://doi.org/10.16844/j.cnki.cn10-1007/tk.2017.09.006. [2] 王明星, 廖昌建. 化石燃料燃烧过程中氮氧化物排放量的评估[J/OL]. 当代化工, 2011, 40(03): 304-306. https://doi.org/10.13840/j.cnki.cn21-1457/tq.2011.03.021. [3] 刘佩琪, 邓志华, 陈奇伯. 城市园林对大气颗粒物的消减与大气中二氧化硫和氮氧化物的浓度变化[J/OL]. 西北林学院学报, 2016, 31(06): 13-18. https://doi.org/10.3969/j.issn.1001-7461.2016.06.03. [4] 许立信, 张淑谦, 童忠良. 燃烧与节能技术[M]. 北京: 化学工业出版社, 2018. [5] 韩继磊. 政府、公众和企业合作治理大气污染物及策略研究[D]. 兰州: 兰州大学, 2024. [6] KRZESZOWIAK J, STEFANOW D, PAWLAS K. The impact of particulate matter(PM)and nitric oxides(NOx)on human health and an analysis of selected sources accounting for their emission in Poland[J/OL]. Medycyna S'rodowiskowa, 2016, 19(3): 7-15. https://doi.org/10.19243/2016301. [7] GUO Y, ZHU L, YE X, et al. Toxicity Impact Assessment of Nitrogen Oxide and Sulfur Dioxide Emissions in China’s Textile Industry With Chemical Footprint Method[J/OL]. AATCC Journal of Research, 2023, 10(4): 232-240. https://doi.org/10.1177/24723444231161744. [8] ASHAL I, SUPUNSIRI W Y, ILYAS K, et al. Implications of trimethylamine N-oxide(TMAO)and Betaine in Human Health: Beyond Being Osmoprotective Compounds[J/OL]. Frontiers in Molecular Biosciences, 2022, 9: 964624-964624. https://doi.org/10.3389/FMOLB.2022.964624. [9] OLDENKAMP R, ZELM R van, HUIJBREGTS M A J. Valuing the human health damage caused by the fraud of Volkswagen[J/OL]. Environmental Pollution, 2016, 212: 121-127. https://doi.org/10.1016/j.envpol.2016.01.053. [10] 贺泓, 翁端, 资新运. 柴油车尾气排放污染控制技术综述[J/OL]. 环境科学, 2007(06): 1169-1177. https://doi.org/10.13227/j.hjkx.2007.06.001. [11] 易红宏, 陈亚雄. 氮氧化物废气的治理技术[J/OL]. 环境科学动态, 1998(04): 18-21. https://doi.org/10.19758/j.cnki.issn1673-288x.1998.04.005. [12] 孟月东, 钟少锋, 熊新阳. 低温等离子体技术应用研究进展[J]. 物理, 2006(02): 140-146. [13] 栾志强, 郝郑平, 王喜芹. 工业固定源VOCs治理技术分析评估[J/OL]. 环境科学, 2011, 32(12): 3476-3486. https://doi.org/10.13227/j.hjkx.2011.12.008. [14] 杨加强, 梅毅, 王驰, 等. 湿法烟气脱硝技术现状及发展[J/OL]. 化工进展, 2017, 36(02): 695-704. https://doi.org/10.16085/j.issn.1000-6613.2017.02.041. [15] 钟秦. 选择性非催化还原法脱除NOx的实验研究[J/OL]. 南京理工大学学报, 2000(01): 68-71. https://doi.org/10.14177/j.cnki.32-1397n.2000.01.017. [16] SONG M, SUN B, LI R, et al. Dynamic succession patterns and interactions of phyllospheric microorganisms during NOx exposure[J/OL]. Journal of Hazardous Materials, 2022, 430: 128371-128371. https://doi.org/10.1016/J.JHAZMAT.2022.128371. [17] HU Y, FERNANDEZ V. Nitrate transporters in leaves and their potential roles in foliar uptake of nitrogen dioxide[ J]. Frontiers in Plant Science, 2014, 5: 360. [18] HU Y, BELLALOUI N, TIGABU M, et al. Gaseous NO2 effects on stomatal behavior, photosynthesis and respiration of hybrid poplar leaves[J/OL]. Acta Physiologiae Plantarum, 2015, 37(2): 1-8. https://doi.org/10.1007/s11738-014-1749-8. [19] HU Y. Morpho-physiological responses of Populus alba x P , berolinensis leaves to nitrogen dioxide/exogenous nitrogen-or sulfer-containing compounds[D]. Northeast Forestry University, 2016. [20] 潘建刚, 呼庆, 齐鸿雁, 等. 叶际微生物研究进展[J/OL]. 生态学报, 2011, 31(02): 583-592. https://doi.org/10.20103/j.stxb.2011.02.032. [21] VORHOLT JULIA A. Microbial life in the phyllosphere[ J/OL]. Nature reviews. Microbiology, 2012, 10(12): 828-840. https://doi.org/10.1038/nrmicro2910. [22] LINDOW STEVEN E, BRANDL MARIA T. Microbiology of the phyllosphere[J/OL]. Applied and environmental microbiology, 2003, 69(4): 1875-1883. https://doi.org/10.1128/AEM.69.4.1875-1883.2003. [23] JACOBSEN B J. Phyllosphere Microbiology[J/OL]. Ecology, 2003, 84(5): 1343-1344. https://www.jstor.org/stable/90021533. [24] STEVEN E. LINDOW, JOHAN H. J. LEVEAU. Phyllospheremicrobiology[J/OL]. Current Opinion in Biotechnology, 2002, 13(3): 238-243. https://doi.org/10.1016/S0958-1669(02)00313-0. [25] RANGEL L I, LEVEAU J H J. Applied microbiologyof the phyllosphere[J/OL]. Applied microbiology andbiotechnology, 2024, 108(1): 211-211. https://doi.org/10.1007/S00253-024-13042-4. [26] 周育, 乔雄梧, 王静, 等. 植物叶际微生物提取方法研究[J/OL]. 植物研究, 2006(02): 2233-2237. [27] BAO L, GU L, SUN B, et al. Seasonal variation of epiphyticbacteria in the phyllosphere of Gingko biloba, Pinusbungeana and Sabina chinensis. [J/OL]. FEMS microbiologyecology, 2020, 96(3). https://doi.org/10.1093/femsec/fiaa017. [28] MONICA C, GIJS K J, ROBBERT K, et al. Exploringmicrobial N2O reduction: a continuous enrichment innitrogen free medium. [J/OL]. Environmental microbiologyreports, 2018, 10(1): 102-107. https://doi.org/10.1111/1758-2229.12615. [29] MOUSSA S, ISSA W, AGNIESZKA K, et al. Quantificationof diversity sampling bias resulting from riceroot bacterial isolation on popular and nitrogen-free culturemedia using 16S amplicon barcoding. [J/OL]. PloSone, 2023, 18(4): e0279049-e0279049. https://doi.org/10.1371/JOURNAL.PONE.0279049. [30] 司春灿, 林英, 殷俊. 一株油脂降解菌的分离筛选及固定化[J/OL]. 微生物学通报, 2025, 52(01): 186-198. https://doi.org/10.13344/j.microbiol.china.240318. [31] REYNA E E, MONTOYA H M, ORDOÑEZ Y T, etal. Insights from a Genome-Wide Study of Pantoea agglomeransUADEC20: A Promising Strain for PhosphateSolubilization and Exopolysaccharides Production[J/OL]. Current Issues in Molecular Biology, 2025, 47(1): 56-56. https://doi.org/10.3390/CIMB47010056. [32] SREEKALA A G V, SARASWATHY S M, NATHANV K, et al. Genomic and biochemical investigations inthe biomineralizing potential of an isolated marine ureolyticBacillus sp. N9[J/OL]. Science of the Total Environment, 2025, 964: 178591-178591. https://doi.org/10.1016/J.SCITOTENV.2025.178591. [33] SCHÖNFELD J, HEUER H, VAN ELSAS J. D, et al. Specific and sensitive detection of Ralstonia solanacearumin soil on the basis of PCR amplification offliC fragments.[J/OL]. Applied and environmental microbiology, 2003, 69(12): 7248-7256. https://doi.org/10.1128/AEM.69.12.7248-7256.2003. [34] MARKUS G, B M E R, AHARON O, et al. Status ofthe SeqCode in the International Journal of Systematicand Evolutionary Microbiology[J/OL]. International Journal of Systematic and Evolutionary Microbiology, 2022, 72(12): 005754. https://doi.org/10.1099/IJSEM.0.005754. [35] 郑紫云. 北桑寄生产黄酮内生菌的分离、筛选及其生物活性研究[D]. 太原: 山西医科大学, 2022. [36] 冯思玲. 系统发育树构建方法研究[J/OL]. 信息技术, 2009, 33(06): 38-40+44. https://doi.org/10.13274/j.cnki.hdzj.2009.06.032. [37] 张丽娜, 荣昌鹤, 何远, 等. 常用系统发育树构建算法和软件鸟瞰[J/OL]. 动物学研究, 2013, 34(06): 640-650. https://doi.org/10.11813/j.issn.0254-5853.2013.6.0640. [38] 张树波, 赖剑煌. 分子系统发育分析的生物信息学方法[J]. 计算机科学, 2010, 37(08): 47-51+66. [39] 黄元桐, 崔杰. 革兰氏染色三步法与质量控制[J/OL]. 微生物学报, 1996(01): 76-79. https://doi.org/10.13343/j.cnki.wsxb.1996.01.015. [40] 谭啸, 章熙东. 革兰氏染色法观察与区分细菌[J]. 生物学教学, 2019, 44(07): 71-72. [41] CHEN M, LI J, ZHANG L. A novel plastic-degradingbacteria isolated from farmland soil utilizes non-solecarbon sources to enhance the degradation of poly(butyleneadipate-co-terephthalate)[J/OL]. Journal of EnvironmentalChemical Engineering, 2025, 13(2): 115461-115461. https://doi.org/10.1016/J.JECE.2025.115461. [42] 刘效毅, 郭坤亮, 辛玉华. 高温大曲中微生物的分离与鉴定[J/OL]. 酿酒科技, 2012(06): 52-55. https://doi.org/10.13746/j.njkj.2012.06.045. [43] 周桂莲, 杨慧霞. 小麦抗旱性鉴定的生理生化指标及其分析评价[J]. 干旱地区农业研究, 1996(02): 65-71. [44] 中国科学院生态环境研究中心. 一种叶际微生物与植物协同净化空气中臭氧的方法: CN202310233588. 4[P]. 2023-08-25. [45] 中国科学院生态环境研究中心. 植物与叶际微生物协同消减空气氨污染的方法: CN202310213009. X[P]. 2023-07-11. [46] GUPTA R S, PATEL S, SAINI N, et al. Robust demarcationof 17 distinct Bacillus species clades, proposedas novel Bacillaceae genera, by phylogenomics and comparativegenomic analyses[J/OL]. International Journalof Systematic and Evolutionary Microbiology, 2020, 70(11): 5753-5798. https://doi.org/10.1099/ijsem.0.004475. [47] SUDIP PATEL, RADHEY S. GUPTA. A phylogenomicand comparative genomic framework for resolvingthe polyphyly of the genus Bacillus[J/OL]. Internationaljournal of systematic and evolutionary microbiology, 2020, 70(1): 406-438. https://doi.org/10.1099/ijsem.0.003775. [48] 东秀珠, 周宇光, 朱红惠, 等. 常见细菌与古菌系统分类鉴定手册[M]. 北京: 科学出版社, 2023: 144. |
引用本文 | 刘子嫣, 闫高俊, 乔翅嵩, 等. 常春藤叶际Priestia flexa的分离、鉴定及氮氧化物转化特性[J]. 中国生态环境保护进展, 2025, 3(2): 12-24. |
Citation | LIU Ziyan, YAN Gaojun, QIAO Chisong, et al. Isolation, identification, and Nitrogen Oxide conversion capacity of Priestia flexa from the phyllosphere of Hedera helix[J]. Progress in Chinese Eco-Environmental Protection, 2025, 3(2): 12-24. |