参考文献
[1] 王佳兰, 李明, 胡云. 内蒙古中草药种植业发展现状问题及对策[J]. 南方农业, 2023, 17(15): 213-216, 220. https://doi.org/10.19415/j.cnki.1673-890x.2023.15.050 [2] Zhao G, Zhu X, Zheng G, et al. Development of biofertilizers for sustainable agriculture over four decades(1980- 2022)[J]. Geography and Sustainability, 2024, 5(1): 19-28. https://doi.org/10.1016/j.geosus.2023.09.006 [3] 中华人民共和国农业部. 微生物肥料术语: NY/T 1113—2006[S]. 北京: 中国标准出版社, 2006. [4] 李想, 翟玉莹. 简介微生物肥料[J]. 吉林农业, 2019(10): 69. https://doi.org/10.14025/j.cnki.jlny.2019.10.036 [5] 刘京京, 陈学文, 梁爱珍, 等. 微生物肥料及其对黑土旱田作物应用的效果[J]. 土壤与作物, 2023, 12(2): 179-195. https://doi.org/10.11689/sc.2022100201 [6] 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 农用微生物菌剂: GB 20287—2006 [S]. 北京: 中国 标准出版社, 2006. [7] 何宇, 吕卫光, 李双喜, 等. γ-聚谷氨酸发酵液对小白菜生长及氮磷肥料利用率的影响[J]. 浙江农业学报, 2023, 35(2): 329-337. https://doi.org/10.3969/j.issn.1004-1524.2023.02.10 [8] 武杼华. 不同菌肥对温室连作土壤的短期改良效果研究[D]. 杨凌: 西北农林科技大学, 2022. https://doi.org/10.27409/d.cnki.gxbnu.2021.000402. [9] Pathania P, Rajta A, Singh P C, et al. Role of plant growth-promoting bacteria in sustainable agriculture[J]. Biocatalysis and Agricultural Biotechnology, 2020, 30: 101842. https://doi.org/10.1016/j.bcab.2020.101842 [10] Backer R, Rokem J S, Ilangumaran G, et al. Plant Growth-Promoting Rhizobacteria: Context, Mechanisms of Action, and Roadmap to Commercialization of Biostimulants for Sustainable Agriculture[J]. Frontiers in Plant Science, 2018, 9: 1473. https://doi.org/10.3389/fpls.2018.01473. [11] Bashan Y. Inoculants of plant growth-promoting bacteria for use in agriculture[J]. Biotechnology Advances, 1998, 16(4): 729-770. https://doi.org/10.1016/S0734-9750(98)00003-2. [12] Srivastava P, Sahgal M, Paul S. Plant Endophytes and Secondary Metabolites[M]. Cambridge: Academic Press, 2023. https://doi.org/10.1016/C2022-0-02120-6. [13] Kumar H, Dubey R C, Maheshwari D K. Effect of plant growth promoting rhizobia on seed germination, growth promotion and suppression of Fusarium wilt of fenugreek( Trigonella foenum-graecum L.)[J]. Crop Protection, 2011, 30(11): 1396-1403. https://doi.org/10.1016/j.cropro.2011.05.001. [14] 唐汉萌. 微生物菌剂和生物炭对半夏产量、品质及土壤微生态的影响[D]. 武汉: 华中农业大学, 2019. https://doi.org/10.27158/d.cnki.ghznu.2019.000724 [15] Kannan K, Rajesh Kannan V, Rajendran S, et al. Behavioural pattern of Bacillus safensis VRKK2 a potential PGPR isolated from cowpea rhizosphere[J]. Journal of Soil Biology & Ecology, 2019, 39: 1-14. [16] 田稼, 吴小杰, 孙超, 等. 胶质芽孢杆菌(Bacillus mucilaginosus)的研究进展[J]. 中国土壤与肥料, 2017(06): 15-22. https://doi.org/10.11838/sfsc.20170603 [17] Khaksar G, Treesubsuntorn C, Thiravetyan P. Endophytic Bacillus cereus ERBP—Clitoria ternatea interactions: Potentials for the enhancement of gaseous form- aldehyde removal[J]. Environmental and Experimental Botany, 2016, 126: 10-20. https://doi.org/10.1016/j.envexpbot.2016.02.009. [18] 覃艮红, 袁洪波, 王卓妮, 等. 蜡样芽孢杆菌挥发物对苹果轮纹病菌的拮抗活性[J]. 园艺学报, 2024, 51(06): 1403-1412. https://doi.org/10.16420/j.issn.0513-353x.2023-0453. [19] Choudhary D K, Johri B N. Interactions of Bacillus spp. and plants - With special reference to induced systemic resistance(ISR)[J]. Microbiological Research, 2009, 164(5): 493-513. https://doi.org/10.1016/j.micres.2008.08.007. [20] 张雯, 李成涛, 郭蕾. 泾阳链霉菌代谢产物抗病虫作用研究[J]. 湖北农业科学, 2014, 53(17): 4068-4070. https://doi.org/10.14088/j.cnki.issn0439-8114.2014.17.096. [21] 李琦, 杨晓蕾, 李晓林, 等. 高寒草地燕麦根际解植酸磷促生菌鉴定及其优势菌假单胞菌属菌株功能特性[J]. 生物技术通报, 2023, 39(03): 243-253. https://doi.org/10.13560/j.cnki.biotech.bull.1985.2022-0686. [22] Berger F, Gutjahr C. Factors affecting plant responsiveness to arbuscular mycorrhiza[J]. Current Opinion in Plant Biology, 2021, 59: 101994. https://doi.org/10.1016/j.pbi.2020.101994 [23] Malhi G S, Kaur M, Kaushik P, et al. Arbuscular mycorrhiza in combating abiotic stresses in vegetables: An eco-friendly approach[J]. Saudi Journal of Biological Sciences, 2021, 28(2): 1465-1476. https://doi.org/10.1016/j.sjbs.2020.12.001 [24] 马俊, 李珊, 顾鹏程, 等. 丛枝菌根真菌影响植物病害的研究进展[J]. 南方农业, 2023, 17(2): 28-31. https://doi.org/10.19415/j.cnki.1673-890x.2023.02.009 [25] 顾艳, 梅瑜, 徐世强, 等. 药用植物连作障碍研究进展[J]. 广东农业科学, 2021, 48(12): 162-173. https://doi.org/10.16768/j.issn.1004-874X.2021.12.018 [26] 罗梦香, 张森, 周旺, 等. 地黄连作障碍研究进展[J]. 河南农业大学学报, 2024, 58(01): 15-22. https://doi.org/10.16445/j.cnki.1000-2340.20231115.003 [27] 杨绪清. 作物连作障碍研究进展[J]. 湖北植保, 2023(4): 20-23, 29. [28] 杨建忠, 官会林, 刘大会, 等. 三七连作障碍发生机理及消减技术研究[J]. 北方园艺, 2016(14): 160-163. https://doi.org/10.11937/bfyy.201614040 [29] Zhao J, Ni T, Li Y, et al. Responses of bacterial communities in arable soils in a rice-wheat cropping system to different fertilizer regimes and sampling times[J]. PLoS One, 2014, 9(1): e85301. https://doi.org/10.1371/journal.pone.0085301 [30] Alami M M, Xue J, Ma Y, et al. Structure, Function, Diversity, and Composition of Fungal Communities in Rhizospheric Soil of Coptis chinensis Franch under a Successive Cropping System[J]. Plants, 2020, 9(2): 244. https://doi.org/10.3390/plants9020244 [31] 高正睿, 臧广鹏, 宿翠翠, 等. 药用植物连作障碍的形成机制及其缓解措施研究进展[J]. 安徽农业科学, 2023, 51(12): 21-25+29. https://doi.org/10.3969/j.issn.0517-6611.2023.12.004 [32] Tong A-Z, Liu W, Liu Q, et al. Diversity and compositionof the Panax ginseng rhizosphere microbiome invarious cultivation modes and ages[J]. BMC Microbiology, 2021, 21(1): 18. https://doi.org/10.1186/s12866-020-02081-2 [33] 赵伟超, 秦朝, 张江利, 等. 河南省温县铁棍山药根腐线虫种类鉴定[J]. 植物保护, 2022, 48(03): 248-253. https://doi.org/10.16688/j.zwbh.2021487 [34] 张重义, 林文雄. 药用植物的化感自毒作用与连作障碍[J]. 中国生态农业学报, 2009, 17(01): 189-196. https://doi.org/10.3724/SP.J.1011.2009.00189 [35] Yuan Y, Zuo J, Zhang H, et al. The Chinese medicinalplants rhizosphere: Metabolites, microorganisms, andinteraction[J]. Rhizosphere, 2022, 22: 100540. https://doi.org/10.1016/j.rhisph.2022.100540 [36] 钟淑敏, 廖晓兰. 作物自毒作用研究进展[J]. 作物研究, 2022, 36(3): 269-274, 286. https://doi.org/10.16848/j.cnki.issn.1001-5280.2022.03.18. [37] 李振方, 齐晓辉, 李奇松, 等. 地黄自毒物质提取及其生物指标测定[J]. 生态学报, 2010, 30(10): 2576-2584. [38] 黄钰芳, 张恩和, 张新慧, 等. 兰州百合根及鳞茎水浸液自毒作用的研究[J]. 草业学报, 2017, 26(08): 93-103. https://doi.org/10.11686/cyxb2016411 [39] 王小国. 根茎类药用植物连作障碍研究进展[J]. 黑龙江农业科学, 2024(03): 110-115+128. https://doi.org/10.11942/j.issn1002-2767.2024.03.0110 [40] Chen L, Yang X, Raza W, et al. Trichoderma harzianumSQR-T037 rapidly degrades allelochemicals in rhizospheresof continuously cropped cucumbers[J]. Applied Microbiologyand Biotechnology, 2011, 89(5): 1653-1663. https://doi.org/10.1007/s00253-010-2948-x. [41] 朱晓琳. 微生物肥料在土壤生态修复治理中的应用[J]. 农经, 2023(5): 103-105. https://doi.org/10.3969/j.issn.1001-8573.2023.05.036. [42] 马红红, 陈宝燕, 杨涛, 等. 不同施肥方式对伊贝母生长及土壤养分的影响[J]. 新疆农业科学, 2017, 54(2): 281-288. https://doi.org/10.6048/j.issn.1001-4330.2017.02.010. [43] Wang K, Hou J, Zhang S, et al. Preparation of a new biochar-based microbial fertilizer: Nutrient release patternsand synergistic mechanisms to improve soil fertility[J]. Science of The Total Environment, 2023, 860: 160478. https://doi.org/10.1016/j.scitotenv.2022.160478. [44] Du T-Y, He H-Y, Zhang Q, et al. Positive effects of organicfertilizers and biofertilizers on soil microbial communitycomposition and walnut yield[J]. Applied SoilEcology, 2022, 175: 104457. https://doi.org/10.1016/j.apsoil.2022.104457. [45] 刘瑞浩. 腐植酸肥、微生物菌肥和土壤调理剂对连作丹参产量和品质的影响[D]. 泰安: 山东农业大学, 2023. https://doi.org/10.27277/d.cnki.gsdnu.2022.000773. [46] Solouki H, Kafi M, Nabati J, et al. Seed biopriming andplant growth-promoting bacteria improve nutrient absorptionand dry matter production of fenugreek(Trigonella foenum-graecum)plants[J]. South AfricanJournal of Botany, 2023, 162: 296-303. https://doi.org/10.1016/j.sajb.2023.09.014. [47] 张晟. 微生物肥料对枸杞种植地土壤生态特征及理化性质的影响[J]. 林业科技通讯, 2018(03): 71-72. https://doi.org/10.13456/j.cnki.lykt.2018.03.025. [48] Fu L, Penton C R, Ruan Y, et al. Inducing the rhizospheremicrobiome by biofertilizer application to suppressbanana Fusarium wilt disease[J]. Soil Biologyand Biochemistry, 2017, 104: 39-48. https://doi.org/10.1016/j.soilbio.2016.10.008. [49] Gupta S, Didwania N, Singh D. Biological control ofmustard blight caused by Alternaria brassicae usingplant growth promoting bacteria[J]. Current Plant Biology, 2020, 23: 100166. https://doi.org/10.1016/j.cpb.2020.100166. [50] Gorai P S, Ghosh R, Konra S, et al. Biological control ofearly blight disease of potato caused by Alternaria alternataEBP3 by an endophytic bacterial strain Bacillusvelezensis SEB1 [J]. Biological Control, 2021, 156: 104551. https://doi.org/10.1016/j.biocontrol.2021.104551. [51] 董天旺. 氮磷肥与微生物肥料配施对2年生太白贝母生长及品质的影响[D]. 杨凌: 西北农林科技大学, 2018. [52] 李娟, 王文丽, 赵旭. 生物肥料HZ-24对黄芪生长及土壤微生物数量和酶活性的影响[J]. 土壤与作物, 2022, 11(2): 200-208. https://doi.org/10.11689/j.issn.2095-2961.2022.02.009. [53] 张会会, 史娟, 王俊, 等. 不同微生物菌剂和生物有机肥对黄芪地下生长量及根腐病的影响[J]. 北方园艺, 2016(1): 140-143. https://doi.org/10.11937/bfyy.201601037. [54] Chowdhury S P, Dietel K, Rändler M, et al. Effects ofBacillus amyloliquefaciens FZB42 on Lettuce Growthand Health under Pathogen Pressure and Its Impact onthe Rhizosphere Bacterial Community[J]. PLOS ONE, 2013, 8(7): e68818. https://doi.org/10.1371/journal.pone.0068818. [55] 周莹. 中药材根腐病海藻生防菌剂的研制[D]. 聊城: 聊城大学, 2016. [56] 栗瑞红, 李红霞, 李长胜, 等. 微生物菌剂对连作蒙古黄芪生物量及土壤真菌群落结构的影响[J]. 北方农业学报, 2022, 50(6): 50-56. https://doi.org/10.12190/j.issn.2096-1197.2022.06.07. [57] Dong L, Li Y, Xu J, et al. Biofertilizers regulate the soilmicrobial community and enhance Panax ginseng yields[J]. Chinese Medicine, 2019, 14(1): 20. https://doi.org/10.1186/s13020-019-0241-1. [58] Li Z, Alami M M, Tang H, et al. Applications of Streptomycesjingyangensis T. and Bacillus mucilaginosusA. improve soil health and mitigate the continuouscropping obstacles for Pinellia ternata(Thunb. )Breit[J]. Industrial Crops and Products, 2022, 180: 114691. https://doi.org/10.1016/j.indcrop.2022.114691. [59] 王继雯, 赵俊杰, 李冠杰, 等 新型复合微生物肥料对冬小麦生物学性状的影响[J]. 南方农业学报, 2018, 49(10): 1953-1958. https://doi.org/10.3969/j.issn.2095-1191.2018.10.08. [60] 李睛, 柴霜, 冯千禧, 等. 植物内生菌在农作物方面的应用探析[J]. 种子科技, 2021(12): 8-9, 15. https://doi.org/10.19904/j.cnki.cn14-1160/s.2021.12.003. [61] Sriwati R, Maulidia V, Intan N, et al. Endophytic bacteriaas biological agents to control fusarium wilt diseaseand promote tomato plant growth[J]. Physiological andMolecular Plant Pathology, 2023, 125: 101994. https://doi.org/10.1016/j.pmpp.2023.101994. [62] Zhang X-h, Zhang D-j, Liu J-l, et al. Antifungal effectsof volatile organic compounds from the endophytic fun- gus Cryptosporiopsis ericae Cc-HG-7 isolated fromCoptis chinensis Franch[J]. Biocontrol Science andTechnology, 2018, 28(5): 496-508. https://doi.org/10.1080/09583157.2018.1460744. [63] Yan H, Jin H, Fu Y, et al. Production of Rare GinsenosidesRg3 and Rh2 by Endophytic Bacteria from Panaxginseng[J]. Journal of Agricultural and Food Chemistry, 2019, 67(31): 8493-8499. https://doi.org/10.1021/acs.jafc.9b03159. [64] 杨焱. 微生物肥料对黄芪连作障碍的缓解作用[D]. 杨凌: 西北农林科技大学, 2023. https://doi.org/10.27409/d.cnki.gxbnu.2022.001534. [65] 赵东岳, 李勇, 丁万隆. 人参自毒物质降解细菌的筛选及其降解特性研究[J]. 中国中药杂志, 2013, 38(11): 1703-1706. https://doi.org/10.4268/cjcmm20131112 [66] Huang W, Long C, Lam E. Roles of Plant-AssociatedMicrobiota in Traditional Herbal Medicine[J]. Trendsin Plant Science, 2018, 23(7): 559-562. https://doi.org/10.1016/j.tplants.2018.05.003. [67] 位小丫, 林煜, 陈婷, 等. 田间条件下植物促生细菌缓解太子参连作障碍的效果评价[J]. 生态学杂志, 2018, 37(2): 399-408. https://doi.org/10.13292/j.1000-4890.201802.036. [68] 任建国, 王益, 刘红美, 等. 菌肥拌种对太子参生长及品质的影响[J]. 江苏农业科学, 2019, 47(07): 116-120. https://doi.org/10.15889/j.issn.1002-1302.2019.07.029. [69] 聂园军, 李晋陵, 李建军, 等. 微生物菌肥在黄瓜上的应用效果研究[J]. 现代农业科技, 2016(21): 55-56. https://doi.org/10.3969/j.issn.1007-5739.2016.21.030. [70] Ahsan T, Tian P-C, Gao J, et al. Effects of microbial agentand microbial fertilizer input on soil microbialcommunity structure and diversity in a peanut continuouscropping system[J]. Journal of Advanced Research, 2023. https://doi.org/10.1016/j.jare.2023.11.028. [71] 王文丽, 李娟, 赵旭. 生物有机肥对连作当归根际土壤细菌群落结构和根腐病的影响[J]. 应用生态学报, 2019, 30(08): 2813-2821. https://doi.org/10.13287/j.1001-9332.201908.030. [72] Santhosh G P. Formulation and shelf life of liquidbiofertilizer inoculants using cell protectants[J]. InternationalJournal of Researches in Biosciences, Agricultureand Technology, 2015, 2: 243-247. [73] 张瑞楠, 邢永秀. 微生物菌肥在作物种植中应用效果与前景分析[J]. 现代农机, 2022(1): 94-95. https://doi.org/10.1016/j.ejsobi.2016.05.002. [74] He Y, Wu Z, Ye B-C, et al. Viability evaluation of alginate-encapsulated Pseudomonas putida Rs-198 undersimulated salt-stress conditions and its effect on cottongrowth[J]. European Journal of Soil Biology, 2016, 75: 135-141. https://doi.org/10.1016/j.ejsobi.2016.05.002. [75] Kumari R, Singh D P. Nano-biofertilizer: An EmergingEco-friendly Approach for Sustainable Agriculture[J]. Proceedings of the National Academy of Sciences, IndiaSection B: Biological Sciences, 2020, 90(4): 733-741. https://doi.org/10.1007/s40011-019-01133-6. [76] Unnikrishnan G, Vijayarghavan R. Utilization of LiquidFertilizers for Agro-Industrial Waste Management andReducing Challenges through Nano-encapsulation-AReview[J]. Indian Journal Of Agricultural Research, 2019, 53(6): 641-645. https://doi.org/10.18805/IJARe.R-1898. [77] Hossain M A, Hossain M S, Akter M. Challenges facedby plant growth-promoting bacteria in field-level applicationsand suggestions to overcome the barriers[J]. Physiological and Molecular Plant Pathology, 2023, 126: 102029. https://doi.org/10.1016/j.pmpp.2023.102029. [78] Ng Z Y, Ajeng A A, Cheah W Y, et al. Towards circulareconomy: Potential of microalgae - bacterial-basedbiofertilizer on plants[J]. Journal of EnvironmentalManagement, 2024, 349: 119445. https://doi.org/10.1016/j.jenvman.2023.119445.