参考文献
[1] Shangguan L, Ning G Z, Tang Y, et al. Discover cervical disc arthroplasty versus anterior cervical discectomy and fusion in symptomatic cervical disc diseases: A meta-analysis[J]. PLoS One, 2017, 12(3): e0174822. http://doi.org/10.1371/journal.pone.0174822 [2] Muss L, Wilmskoetter J, Richter K, et al. Changes in Swallowing After Anterior Cervical Discectomy and Fusion With Instrumentation: A Presurgical Versus Postsurgical Videofluoroscopic Comparison[J]. J Speech Lang Hear Res, 2017, 60(4): 785-793. http://doi.org/10.1044/2016_jslhr-s-16-0091 [3] 王迎军, 杜昶, 赵娜如, 等. 仿生人工骨修复材料研究 [J]. 华南理工大学学报(自然科学版), 2012, 40(10): 51-58. http://doi.org/10.3969/j.issn.1000-565X.2012.10.007 [4] 吴仲恺. 牙周骨移植材料研究进展 [J]. 中国实用口腔科杂志, 2012, 5(02): 120-123. [5] Lasanianos N G, Kanakaris N K, Giannoudis P V. Current management of long bone large segmental defects[J]. Orthopaedics and Trauma, 2010, 24(2): 149-163. https://doi.org/10.1016/j.mporth.2009.10.003 [6] Kurtz S M, Devine J N. PEEK biomaterials in trauma, orthopedic, and spinal implants[J]. Biomaterials, 2007, 28(32): 4845-4869. http://doi.org/10.1016/j.biomaterials.2007.07.013 [7] Korovessis P, Repantis T, Vitsas V, et al. Cervical spondylodiscitis associated with oesophageal perforation: a rare complication after anterior cervical fusion[J]. Eur J Orthop Surg Traumatol, 2013, 23 Suppl 2: S159-63. http://doi.org/10.1007/s00590-012-1092-y [8] Barbosa F, Garrudo F F F, Alberte P S, et al. Hydroxyapatite-filled osteoinductive and piezoelectric nanofibers for bone tissue engineering[J]. Sci Technol Adv Mater, 2023, 24(1): 2242242. http://doi.org/10.1080/14686996.2023.2242242 [9] Roldan L, Montoya C, Solanki V, et al. A Novel Injectable Piezoelectric Hydrogel for Periodontal Disease Treatment[J]. ACS Appl Mater Interfaces, 2023, 15(37): 43441-43454. http://doi.org/10.1021/acsami.3c08336 [10] Deng B G, Wang Y H, Wu Y F, et al. Raman Nanotags- Guided Intraoperative Sentinel Lymph Nodes Precise Location with Minimal Invasion[J]. Advanced Science, 2022, 9(2). http://doi.org/10.1002/advs.202102405 [11] Liu Y, Tian H, Hu Y, et al. Mechanosensitive Piezo1 is crucial for periosteal stem cell-mediated fracture healing[J]. Int J Biol Sci, 2022, 18(10): 3961-3980. http://doi.org/10.7150/ijbs.71390 [12] Srirussamee K, Mobini S, Cassidy N J, et al. Direct electrical stimulation enhances osteogenesis by inducing Bmp2 and Spp1 expressions from macrophages and preosteoblasts[J]. Biotechnology and Bioengineering, 2019, 116(12): 3421-3432. http://doi.org/10.1002/bit.27142 [13] Panda P K. Review: environmental friendly lead-free piezoelectric materials[J]. Journal of Materials Science, 2009, 44(19): 5049-5062. http://doi.org/10.1007/s10853-009-3643-0 [14] Rodrigues M T, Gomes M E, Mano J F, et al. β-PVDF Membranes Induce Cellular Proliferation and Differentiation in Static and Dynamic Conditions[J]. Materials Science Forum, 2008, 587-588: 72-76. http://doi.org/10.4028/www.scientific.net/MSF.587-588.72 [15] Damaraju S M, Wu S, Jaffe M, et al. Structural changes in PVDF fibers due to electrospinning and its effect on biological function[J]. Biomedical Materials, 2013, 8(4). http://doi.org/10.1088/1748-6041/8/4/045007 [16] Pärssinen J, Hammarén H, Rahikainen R, et al. Enhancement of adhesion and promotion of osteogenic differentiation of human adipose stem cells by poled electroactive poly(vinylidene fluoride)[J]. Journal of Biomedical Materials Research Part A, 2015, 103(3): 919-928. https://doi.org/10.1002/jbm.a.35234 [17] Ribeiro C, Sencadas V, Correia D M, et al. Piezoelectric polymers as biomaterials for tissue engineering applications[J]. Colloids and Surfaces B: Biointerfaces, 2015, 136: 46-55. https://doi.org/10.1016/j.colsurfb.2015.08.043 [18] Damaraju S M, Shen Y, Elele E, et al. Three-dimensional piezoelectric fibrous scaffolds selectively promote mesenchymal stem cell differentiation[J]. Biomaterials, 2017, 149: 51-62. http://doi.org/10.1016/j.biomaterials.2017.09.024 [19] Kang S J, Park Y J, Sung J, et al. Spin cast ferroelectricbeta poly(vinylidene fluoride)thin films via rapid thermalannealing[J]. Applied Physics Letters, 2008, 92(1). http://doi.org/10.1063/1.2830701 [20] Sajkiewicz P, Wasiak A, Gocłowski Z. Phase transitionsduring stretching of poly(vinylidene fluoride)[J]. EuropeanPolymer Journal, 1999, 35(3): 423-429. https://doi.org/10.1016/S0014-3057(98)00136-0 [21] Sencadas V, R. G J, AND Lanceros-Méndez S. α to βPhase Transformation and Microestructural Changes ofPVDF Films Induced by Uniaxial Stretch[J]. Journalof Macromolecular Science, Part B, 2009, 48(3): 514-525. http://doi.org/10.1080/00222340902837527 [22] Zhang Y Y, Jiang S L, Yu Y, et al. Phase transformationmechanisms and piezoelectric properties of poly(vinylidene fluoride)/montmorillonite composite[J]. Journal of Applied Polymer Science, 2012, 123(5): 2595-2600. https://doi.org/10.1002/app.34431 [23] Neumann G, Bihler E, Eberle G, et al. Polarization distributionin PVDF obtained by poling under constant current condition; proceedings of the Annual Conferenceon Electrical Insulation and Dielectric Phenomena, F 28-31 Oct. 1990, 1990[C]. https://doi.org/10.1109/CEIDP.1990.201326 [24] Nilsson E, Lund A, Jonasson C, et al. Poling and characterizationof piezoelectric polymer fibers for use intextile sensors[J]. Sensors and Actuators A: Physical, 2013, 201: 477-486. https://doi.org/10.1016/j.sna.2013.08.011 [25] Gao H, Minh P T, Wang H, et al. High-performanceflexible yarn for wearable piezoelectric nanogenerators[J]. Smart Materials and Structures, 2018, 27(9). http://doi.org/10.1088/1361-665X/aad718 [26] Bodkhe S, Rajesh P S M, Kamle S, et al. Beta-phase enhancementin polyvinylidene fluoride through filler addition: comparing cellulose with carbon nanotubes andclay[J]. Journal of Polymer Research, 2014, 21(5): 434. http://doi.org/10.1007/s10965-014-0434-3 [27] Rajesh P S M, Bodkhe S, Kamle S, et al. Enhancing beta-phase in PVDF through physicochemical modificationof cellulose[J]. Electronic Materials Letters, 2014, 10(1): 315-319. http://doi.org/10.1007/s13391-013-3083-5 [28] Huang Z X, Li L W, Huang Y Z, et al. Self-poled piezoelectricpolymer composites via melt-state energy implantation[J]. Nature Communications, 2024, 15(1). http://doi.org/10.1038/s41467-024-45184-4 [29] Bencomo J A, Iacono S T, Mccollum J. 3D printingmultifunctional fluorinated nanocomposites: tuningelectroactivity, rheology and chemical reactivity[J]. Journal of Materials Chemistry A, 2018, 6(26): 12308-12315. http://doi.org/10.1039/C8TA00127H [30] Liu Y, Chen X, Wang L, et al. Surface charge of PLAmicroparticles in regulation of antigen loading, macrophagephagocytosis and activation, and immune effects[J]. Particuology, 2014, 17: 74-80. http://doi.org/10.1016/j.partic.2014.02.006 [31] Salehiyan R, Ray S S, Ojijo V. Processing-Driven MorphologyDevelopment and Crystallization Behavior ofImmiscible Polylactide/Poly(Vinylidene Fluoride)Blends[J]. Macromolecular Materials and Engineering, 2018, 303(10). http://doi.org/10.1002/mame.201800349 [32] Wang B, Huang H-X. Incorporation of halloysite nanotubesinto PVDF matrix: Nucleation of electroactivephase accompany with significant reinforcement and dimensionalstability improvement[J]. Composites Parta-Applied Science and Manufacturing, 2014, 66: 16-24. http://doi.org/10.1016/j.compositesa.2014.07.001 [33] Nakagawa K, Ishida Y. Estimation of amorphous specificvolume of poly(vinylidene fluoride)as a function oftemperature[J]. Kolloid-Zeitschrift and Zeitschrift FurPolymere, 1973, 251(2): 103-107. http://doi.org/10.1007/bf01498933 [34] Chu L, Li R, Liao Z, et al. Highly Effective Bone FusionInduced by the Interbody Cage Made of Calcium Silicate/Polyetheretherketone in a Goat Model[J]. ACSBiomater Sci Eng, 2019, 5(5): 2409-2416. http://doi.org/10.1021/acsbiomaterials.8b01193