摘要 | 材料轻量化是实现节能减排和减碳低碳时代政策的关键推动因素之一, 因而成为当下科研机构与企业开发的热点课题。为实现轻质、减重、降成本等应用目标, 各样轻质材料应运而生。其中, 纤维金属层板能够综合纤维复合材料与金属材料的优势性能, 将各组成材料的资源进行优化设计配置, 从而满足单一材料所不能满足的性能要求。本文以聚丙烯玻璃纤维-铝板纤维金属层板为研究对象, 通过模压成型制备并考察了其力学性能以及层间断裂韧性, 为轻量化材料设计提供新思路。 |
Abstract | In the promotion of energy conservation, emission reduction, carbon reduction and low-carbon on the global scale, the lightweight of material development has become a hot topic in the development of scientific research institutions and enterprises. In order to achieve application goals such as lightweight, weight reduction, and cost reduction, various lightweight materials have emerged. Among them, fiber metal laminates can integrate the advantageous properties of fiber composite materials and metal materials, and optimize the design and configuration of the resources of each component material, so as to meet the performance requirements that cannot be met by a single material. In this paper, glass fiber reinforced polypropylene and aluminum alloy are joined to fabricate thermoplastic fiber-metal laminates via compression molding, and the mechanical properties and interlaminar fracture toughness are investigated by molding, which provides a new perspective on lightweight materials design. |
DOI | 10.48014/pcms.20220614001 |
文章类型 | 研究性论文 |
收稿日期 | 2022-06-14 |
接收日期 | 2022-06-20 |
出版日期 | 2022-06-28 |
关键词 | 聚丙烯玻璃纤维, 铝合金, 纤维金属层板, 拉伸性能, 弯曲性能 |
Keywords | Glass fiber reinforced polypropylene, aluminum alloy, fiber-metal laminates, tensile properties, flexural properties |
作者 | 曲世洁1, 刘帅2,* |
Author | QU Shijie1, LIU Shuai2,* |
所在单位 | 1. 大连东软控股有限公司, 大连 116023 2. 上海电气电站设备有限公司上海发电机厂, 上海 201100 |
Company | 1. Dalian Neusoft Holdings Co. Ltd. , Dalian 116023, China 2. Shanghai Generator Plant of Shanghai Electric Power Generation Equipment Co. Ltd. , Shanghai 201100, China |
浏览量 | 1160 |
下载量 | 456 |
参考文献 | [1] 陈星弛. 新型金属纤维层板层间断裂韧性及冲击响应[D]. 大连: 大连理工大学, 2019. https://dx.doi.org/10.26991/d.cnki.gdllu.2019.000338 [2] 柏慧, 惠虎, 杨斌, 等. 含有断裂缺陷的复合材料壳体的力学行为[J]. 高压物理学报, 2021, 35(03): 132-140. https://dx.doi.org/10.11858/gywlxb.20200649 [3] 崔新宇, 周晓东, 戴干策. 玻璃纤维增强聚丙烯复合材料的界面结晶行为[J]. 塑料科技, 2000(03): 14-18. https://dx.doi.org/10.15925/j.cnki.issn1005-3360.2000.03.005 [4] 付鹏强, 蒋银红, 王义文, 等. CFRP制孔加工技术的研究进展与发展趋势[J]. 航空材料学报, 2019, 39(06): 32-45. https://dx.doi.org/10.11868/j.issn.1005-5053.2019.000043 [5] 贾新强, 郎利辉. 纤维金属层板制备成形的研究现状及发展趋势[J]. 精密成形工程, 2017, 9(02): 1-6. https://dx.doi.org/10.3969/j.issn.1674-6457.2017.02.001 [6] 朱公志, 郑长良, 朱敏捷, 等. 基于APDL的纤维增强金属层合板层间断裂韧性能分析[J]. 科学技术与工程, 2011, 11(29): 7217-7220. https://dx.doi.org/10.3969/j.issn.1671-1815.2011.29.036 [7] 马亚利, 王璐, 欧谨, 等. 温度荷载作用下GFRP-泡沫夹层结构Ⅱ型界面断裂韧性分析[J]. 南京工业大学学报(自然科学版)(03), 90-95, 125. https://dx.doi.org/10.3969/j.issn.1671-7627.2017.03.016 [8] 滕项铭. 裂纹尖端疲劳塑性区研究[D]. 上海: 上海交通大学, 2011. [9] 黄梅, 潘静雯, 江剑. 纤维增强复合材料中多分层损伤的识别研究[J]. 复合材料科学与工程, 2021(05): 21-30. https://dx.doi.org/10.19936/j.cnki.2096-8000.20210528.003 [10] 邓健, 卢天健, 尹乔之. 复合材料MMB试件Ⅰ-Ⅱ混合型层间裂纹扩展分析[J]. 航空学报, 2021, 42(02): 150-161. [11] 康永胜, 张小章, 王黎明, 等. 圆弧形单向纤维增强树脂复合材料的I型层间断裂韧性测试及分析[J]. 复合材料学报, 2021, 5(02): 13-15. https://dx.doi.org/10.13801/j.cnki.fhclxb.20210312.004 [12] 胡海威. FML的低速冲击损伤试验与数值分析方法研究[D]. 西安: 西北工业大学, 2015. https://dx.doi.org/10.7666/d.D01041692 [13] Junquan Y, Wenbin Z, Guoqun Z. Influence of strain, temperature, and strain rate on interfacial structure and strength of AZ31BMg/6063Al formed by plastic deformation bonding[J]. Journal of Manufacturing Processes, 2021, 16(3): 29-30. https://dx.doi.org/10.1016/j.jmapro.2021.03.026 [14] Zaczynska M, Mania R J. Dynamic stability of thinwalled FML columns including delamination[J]. Composites Structures, 2022, 290: 115478. https://dx.doi.org/10.1016/j.compstruct.2022.115478 [15] Wangsheng H. Effects of large deflection on mode Ⅱ fracture test of composite materials[J]. Journal of Composite Materials, 1995, 29(6): 16-17. https://dx.doi.org/10.1177/002199839502900608 [16] Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials: ASTM D3039/ D3039M-17[S]. 2017. [17] Standard Test Method for Flexural Properties of Polymer Matrix Composite Materials: ASTM D7264/ D7264M-15[S]. 2015. [18] Standard Test Method for Determination of the Mode II Interlaminar Fracture Toughness of Unidirectional Fiber- Reinforced Polymer Matrix Composites: ASTM D7905/D7905M[S]. 2019. [19] 管国阳, 矫桂琼, 潘文革. 湿热环境下复合材料的混合型层间断裂特性研究[J]. 复合材料学报, 2004(02): 81-86. https://dx.doi.org/10.3321/j.issn:1000-3851.2004.02.015 [20] Mou D, Mora D. Equivalent crack based analyses of ENF and ELS tests[J]. Engineering Fracture Mechanics, 2007, 75(9): 20-23. https://dx.doi.org/10.1016/j.engfracmech.2007.03.005 [21] 李晓星, 王文鹏, 李小峰. 基于数字图像相关技术的裂纹扩展测量[J]. 理化检验(物理分册), 2018, 54(08): 552-556, 562. https://dx.doi.org/10.11973/lhjy-wl201808002 |
引用本文 | 曲世洁, 刘帅. 热塑树脂基纤维金属层板性能研究[J]. 中国材料科学进展, 2022, 1(1): 18-24. |
Citation | QU Shijie, LIU Shuai. Research on the performance of thermoplastic resin-based fiber metal laminates[J]. Progress in Chinese Materials Sciences, 2022, 1(1): 18-24. |