2024年4月21日 星期日
磁流变弹性体轴向磁流变效应与剪切磁流变效应对比研究
Comparative Study on Axial Magnetorheological Effect and Shear Magnetorheological Effect of Magnetorheological Elastomer
摘要

磁流变弹性体 (Magnetorheological Elastomer, MRE) 的磁流变效应表现为其黏弹性可由磁场实时可逆调控。MRE智能变刚度隔震装置主要利用材料在剪切方向的磁流变效应, 因此对MRE磁流变效应的研究集中在剪切方向, 然而在竖向隔震中主要依赖于MRE的轴向磁流变效应, 为此, 本文通过试验对MRE在轴向荷载作用下的磁流变效应进行研究, 并将其与剪切荷载下的磁流变效应进行对比分析。基于电子万能试验机及励磁装置设计轴向磁流变效应测试系统, 并采用旋转流变仪研究其剪切磁流变效应。两种模式下, 磁场强度在0~184kA/m 间调节, 应变幅值范围为5%~15%。测试得到不同磁场下MRE的拉压滞回曲线及剪切滞回曲线, 并计算其在不同工况下的黏弹性力学参数。试验结果表明, MRE在轴向荷载下具有良好的磁致变模量、变阻尼特性; 与剪切工作模式相比, 拉压工作模式下的储能模量及损耗模量均有提高, 而阻尼损耗因子较小。

Abstract

The magnetorheological effect of magnetorheological elastomer (MRE) suggests that the viscoelasticity of MRE can be reversibly regulated by magnetic fields in real time. Presently, MRE intelligent variable stiffness isolation device mainly employs the magnetorheological effect of materials in the shear direction, in which case the research on MRE magnetorheological effect is largely focused on the shear direction. However, in the vertical isolation, such study mainly deals with the axial magnetorheological effect of MRE. Our paper, which studies the magnetorheological effect of MRE under axial load through experiments, tries to draw a comparative analysis between the magnetorheological effect with that under shear load. Based on the electronic universal testing machine and excitation device, the axial magnetorheological effect test system was designed, and the shear magnetorheological effect was studied by rotating rheometer. Under the two operating modes, the magnetic field intensity was adjusted between 0~184kA/m, whereas the strain amplitude range varied from 5% to 15%. The tension-compressive hysteretic curves and shear hysteretic curves of MRE under different magnetic fields were obtained, and the viscoelastic mechanical parameters under different working conditions were calculated. The test results show that MRE has good characteristics of magnetostrictive variable modulus and variable damping under axial load. Compared with shear mode, the storage modulus and loss modulus under tension-compressive mode are improved, while the damping loss factor is relatively smaller.

DOI10.48014/pcms.20220327004
文章类型研究性论文
收稿日期2022-03-27
接收日期2022-04-08
出版日期2022-06-28
关键词磁流变弹性体, 轴向磁流变效应, 剪切磁流变效应
KeywordsMagnetorheological elastomer, axial magnetorheological effect, shear magnetorheological effect
作者李江涛1, 王奇2, 佟昱3, 马宁1,*, 曾耀祥4, 赵佳敏4, 董旭峰3,*
AuthorLI Jiangtao1, WANG Qi2, TONG Yu3, MA Ning1,*, ZENG Yaoxiang4, ZHAO Jiamin4, DONG Xufeng3,*
所在单位1. 大连理工大学土木工程学院, 大连 116024
2. 海南大学土木建筑工程学院, 海口 570228
3. 大连理工大学材料科学与工程学院, 大连 116024
4. 北京宇航系统研究所, 北京 100076
Company1. School of Civil Engineering, Dalian University of Technology, Dalian 116024, China
2. School of Civil and Architectural Engineering, Hainan University, Haikou 570228, China
3. School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China
4. Beijing Institute of Astronautical Systems Engineering, Beijing 100076, China
浏览量489
下载量235
基金项目国家自然科学基金项目(52178459)资助。
参考文献[1] 张荣山. 工程振动与控制[M]. 北京: 中国建筑工业出版社, 2003.
[2] 吴体, 肖承波, 熊峰. 建筑结构中的振动问题与对策[J]. 四川建筑科学研究, 2006, 32(6): 3.
[3] 中国工程建设标准化协会建筑振动专业委员会. 建筑振动工程手册[M]. 北京: 中国建筑工业出版社, 2002.
[4] 徐建, 尹学军, 陈骝. 工业工程振动控制关键技术研究进展[J]. 建筑结构. 2015, 45(19): 7.
[5] Blom P, Kari L. Smart audio frequency energy flow control by magneto-sensitive rubber isolators[J]. Smart Materials & Structures, 2008, 17(1): 015043.
https://doi.org/10.1088/0964-1726/17/1/015043
[6] Opie S, Yim W. Design and control of a real-time variable modulus vibration isolator[J]. Journal of Intelligent Material Systems and Structures, 2011, 22(2): 113-125.
https://doi.org/10.1177/1045389X10389204
[7] Opie S, Yim W. Design and control of a real-time variable stiffness vibration isolator[C]//2009 IEEE/ASME international conference on advanced intelligent mechatronics. IEEE, 2009: 380-385.
https://doi.org/10.1109/AIM.2009.5229983
[8] Lerner A A, Cunefare K A. Performance of MRE-based vibration absorbers[J]. Journal of Intelligent Material Systems and Structures, 2008, 19(5): 551-563.
https://doi.org/10.1177/1045389X07077850
[9] Deng H X, Gong X L. Application of magnetorheological elastomer to vibration absorber[J]. Communications in Nonlinear Science and Numerical Simulation, 2008, 13(9): 1938-1947.
https://doi.org/10.1016/j.cnsns.2007.03.024
[10] Kim Y K, Koo J H, Kim K S, et al. Developing a real time controlled adaptive MRE-based tunable vibration absorber system for a linear cryogenic cooler[C]//2011 IEEE/ASME International Conference on Advanced Intelligent Mechatronics(AIM). IEEE, 2011: 287-290.
https://doi.org/10.1109/AIM.2011.6026978
[11] Behrooz M, Wang X, Gordaninejad F. Performance of a new magnetorheological elastomer isolation system[J]. Smart Materials and Structures, 2014, 23(4): 045014.
https://doi.org/10.1088/0964-1726/23/4/045014
[12] Jung H J, Eem S H, Jang D D, et al. Seismic performance analysis of a smart base-isolation system considering dynamics of MR elastomers[J]. Journal of Intelligent Material Systems and Structures, 2011, 22(13): 1439-1450.
https://doi.org/10.1177/1045389X11414224
[13] Koo J H, Jang D D, Usman M, et al. A feasibility study on smart base isolation systems using magneto-rheological elastomers[J]. Structural Engineering and Mechanics, 2009, 32(6): 755-770.
http://dx.doi.org/10.12989/sem.2009.32.6.755
[14] Eem S H, Jung H J, Koo J H. Application of MR elastomers for improving seismic protection of base-isolated structures[J]. IEEE Transactions on Magnetics, 2011, 47(10): 2901-2904.
https://doi.org/10.1109/TMAG.2011.2156771
[15] Behrooz M, Sutrisno J, Wang X, et al. A new isolator for vibration control[C]//Active and passive smart structures and integrated systems 2011. SPIE, 2011, 7977: 351-359.
http://dx.doi.org/10.1117/12.881871
[16] Li Y, Li J, Tian T, et al. A highly adjustable magnetorheological elastomer base isolator for applications of real-time adaptive control[J]. Smart Materials and Structures, 2013, 22(9): 095020.
http://dx.doi.org/10.1088/0964-1726/22/9/095020
[17] Wang Q, Dong X, Li L, et al. Study on an improved variable stiffness tuned mass damper based on conical magnetorheological elastomer isolators[J]. Smart Materials and Structures, 2017, 26(10): 105028.
http://dx.doi.org/10.1088/1361-665X/aa81e8
[18] Kallio M, Lindroos T, Aalto S, et al. Dynamic compression testing of a tunable spring element consisting of a magnetorheological elastomer[J]. Smart Materials and Structures, 2007, 16(2): 506-514.
http://dx.doi.org/10.1088/0964-1726/16/2/032
[19] Li J, Gong X, Xu Z B, et al. The effect of pre-structure process on magnetorheological elastomer performance[J]. International Journal of Materials Research, 2008, 99(12): 1358-1364.
https://doi.org/10.3139/146.101775
[20] Zhou G Y. Shear properties of a magnetorheological elastomer[J]. Smart Materials and Structures, 2003, 12(1): 139-146.
http://dx.doi.org/10.1088/0964-1726/12/1/316
[21] Jolly M R, Carlson J D, Munoz B C, et al. The Magnetoviscoelastic response of elastomer composites consisting of ferrous particles embedded in a polymer matrix [J]. Journal of Intelligent Material Systems & Structures, 1996, 7(6): 613-622.
https://doi.org/10.1177/1045389X9600700601
[22] Dong X, Ma N, Qi M, et al. The pressure-dependent MR effect of magnetorheological elastomers[J]. Smart materials and structures, 2012, 21(7): 075014.
https://doi.org/10.1088/0964-1726/21/7/075014
[23] Tian T F, Li W H, Alici G, et al. Microstructure and magnetorheology of graphite-based MR elastomers[J]. RheologicaActa, 2011, 50(9-10): 825-836.
https://doi.org/10.1007/s00397-011-0567-9
[24] Vatandoost H, Sedaghati R, Rakheja S, et al. Effect of pre-strain on compression mode properties of magnetorheological elastomers[J]. Polymer Testing, 2021, 93: 106888.
https://doi.org/10.1016/j.polymertesting.2020.106888
[25] Popp K M, Kröger M, Li W, et al. MRE properties under shear and squeeze modes and applications[J]. Journal of Intelligent Material Systems and Structures, 2010, 21(15): 1471-1477.
https://doi.org/10.1177/1045389X09355666
[26] 王宇飞, 何琳, 杨雪. 磁流变弹性体的动态压缩性能[J]. 高分子材料科学与工程, 2011, 27(5): 4.
[27] Fereidooni A, Martins A, Wickramasinghe V, et al. Fabrication and characterization of highly controllable magnetorheological material in compression mode[J]. Journal of Intelligent Material Systems and Structures, 2020, 31(14): 1641-1661.
https://doi.org/10.1177/1045389X20930081
引用本文李江涛, 王奇, 佟昱, 等. 磁流变弹性体轴向磁流变效应与剪切磁流变效应对比研究[J]. 中国材料科学进展, 2022, 1(1): 1-10.
CitationLI Jiangtao, WANG Qi, TONG Yu, et al. Comparative study on axial magnetorheological effect and shear magnetorheological effect of magnetorheological elastomer[J]. Progress in Chinese Materials Science, 2022, 1(1): 1-10.