2024年5月2日 星期四
磁性纳米粒子的合成及其生物医学应用研究进展
Synthesis and Biomedical Applications of Magnetic Nanoparticles
摘要

磁性纳米粒子是一种发展迅速的新型功能材料, 在生物医学领域具有很高的应用价值, 由于其具有大的比表面积、强的磁响应性、良好的生物相容性和独特的超顺磁性, 被广泛应用于磁性分离、磁性转染、磁热疗、磁性药物靶向载体和纯化等方面。本文概括了磁性纳米粒子的制备方法和表面改性技术, 并论述了磁性纳米粒子在生物医学领域的应用与发展。

Abstract

Magnetic nanoparticles are a new type of functional material that develops rapidly and has high application value. Because of their high specific surface area, strong magnetic responsiveness, excellent biocompatibility and typical superparamagnetism, they have been widely used in the field of biomedical applications including magnetic separation, magnetic transfection, magnetic hyperthermia, magnetic targeting drug carrier and purification. In this paper, the preparative methods and surface modification techniques of magnetic nanoparticles were summarized, and the application and development of magnetic nanoparticles in the field of biomedicine were discussed.  

DOI10.48014/pcms.20220401002
文章类型综 述
收稿日期2022-04-01
接收日期2022-04-21
出版日期2022-06-28
关键词磁性纳米粒子, 制备, 表面改性, 生物医学
KeywordsMagnetic nanoparticles, preparation, surface modification, biomedicine
作者祁雄威1, 耿佳宏1, 司方方1, 张超1, 王光硕1,2,3,*
AuthorQI Xiongwei1, GENG Jiahong1, SI Fangfang1, ZHANG Chao1, WANG Guangshuo1,2,3,*
所在单位1. 河北工程大学材料科学与工程学院, 邯郸 056038
2. 河北工程大学河北省改性塑料技术创新中心, 邯郸 056038
3. 河北工程大学邯郸市新型无机非金属复合材料重点实验室, 邯郸 056038
Company1. School of Materials Science and Engineering, Hebei University of Engineering, Handan 056038, China
2. Technology Innovation Center of Modified Plastics of Hebei Province, Hebei University of Engineering, Handan 056038, China
3. Key Laboratory of New Inorganic Nonmetallic Composite of Handan, Hebei University of Engineering, Handan 056038, China
浏览量759
下载量388
参考文献[1] Lee H, Kim D I, Kwon S H, et al. Magnetically actuated drug delivery helical microrobot with magnetic nanoparticle retrieval ability[J]. ACS Applied Materials & Interfaces, 2021, 13(17): 19633-19647.
https://dx.doi.org/10.1021/acsami.1c01742
[2] Awadh A A, Gresley A L, Forster-Wilkins G, et al. Determination of metabolic activity in planktonic and biofilm cells of Mycoplasma fermentans and Mycoplasma pneumoniae by nuclear magnetic resonance[J]. Scientific Reports, 2021, 11(1): 5650.
https://dx.doi.org/10.1038/s41598-021-84326-2
[3] Khramtsov P, Barkina I, Kropaneva M, et al. Magnetic nanoclusters coated with albumin, casein, and gelatin: size tuning, relaxivity, stability, protein corona, and application in nuclear magnetic resonance immunoassay [J]. Nanomaterials, 2019, 9(9): 1345.
https://dx.doi.org/10.3390/nano9091345
[4] Ahmed S, Dubey D, Chowdhury A, et al. Nuclear magnetic resonance-based metabolomics reveals similar metabolomics profiles in undifferentiated peripheral spondyloarthritis and reactive arthritis[J]. International Journal of Rheumatic Diseases, 2019, 22(4): 725-733.
https://dx.doi.org/10.1111/1756-185X.13490
[5] Romaniuk J A H, Cegelski L. Peptidoglycan and teichoic acid levels and alterations in staphylococcus aureus by cell-wall and whole-cell nuclear magnetic resonance[J]. Biochemistry, 2018, 57(26): 3966-3975.
https://dx.doi.org/10.1021/acs.biochem.8b00495
[6] Liu Y L, Chen D, Shang P, et al. A review of magnet systems for targeted drug delivery[J]. Journal of Controlled Release, 2019, 302: 90-104.
https://dx.doi.org/10.1016/j.jconrel.2019.03.031
[7] Ma W F, Wu K Y, Tang J, et al. Magnetic drug carrier with a smart pH-responsive polymer network shell for controlled delivery of doxorubicin[J]. Journal of Materials Chemistry, 2012, 22(30): 15206-15214.
https://dx.doi.org/10.1039/C2JM31721D
[8] Unni M, Zhang J, George T J, et al. Engineering magnetic nanoparticles and their integration with microfluidics for cell isolation[J]. Journal of Colloid and Interface Science, 2020, 564: 204-215.
https://dx.doi.org/10.1016/j.jcis.2019.12.092
[9] Gupta R, Sharma D.(Carboxymethyl-stevioside)-coated magnetic dots for enhanced magnetic hyperthermia and improved glioblastoma treatment[J]. Colloids and Surfaces B: Biointerfaces, 2021, 205: 111870.
https://dx.doi.org/10.1016/j.colsurfb.2021.111870
[10] Ren M X, Wang Y Q, Lei B Y, et al. Magnetite nanoparticles anchored on graphene oxide loaded with doxorubicin hydrochloride for magnetic hyperthermia therapy[J]. Ceramics International, 2021, 47(14): 20686-20692.
https://dx.doi.org/10.1016/j.ceramint.2021.04.080
[11] Lee M C, Seonwoo H, Jang K J, et al. Development of novel gene carrier using modified nano hydroxyapatite derived from equine bone for osteogenic differentiation of dental pulp stem cells[J]. Bioactive Materials, 2021, 6(9): 2742-2751.
https://dx.doi.org/10.1016/j.bioactmat.2021.01.020
[12] Chang L, Yan H, Chang J, et al. Cationic polymer brush-coated bioglass nanoparticles for the design of bioresorbable RNA delivery vectors[J]. European Polymer Journal, 2021, 156: 110593.
https://dx.doi.org/10.1016/j.eurpolymj.2021.110593
[13] Vigneswari T, Raji P, Thiruramanathan P. Magnetic targeting carrier applications of bismuth-doped nickel ferrites nanoparticles by co-precipitation method[J]. Transactions of the Indian Institute of Metals, 2021, 74(9): 2255-2265.
https://dx.doi.org/10.1007/s12666-021-02312-8
[14] Rahman M A, Radhakrishnan R, Gopalakrishnan R. Structural, optical, magnetic and antibacterial properties of Nd doped NiO nanoparticles prepared by coprecipitation method[J]. Journal of Alloys and Compounds, 2018, 742: 421-429.
https://dx.doi.org/10.1016/j.jallcom.2018.01.298
[15] 刘焕东, 莫尊理, 郭瑞斌, 等. 磁性纳米材料的控制合成 研究新进展[J]. 化工新型材料, 2016, 44(12): 1-3, 6.
https://dx.doi.org/10.7502/j.issn.1674-3962.2016.04.07
[16] Irfan M, Dogan N, Bingolbali A, et al. Synthesis and characterization of NiFe2O4 magnetic nanoparticles with different coating materials for magnetic particle imaging(MPI)[J]. Journal of Magnetism and Magnetic Materials, 2021, 537: 168150.
https://dx.doi.org/10.1016/j.jmmm.2021.168150
[17] Gounder T J, Pasha S K K. Hydrothermal synthesis of copper oxide-nanoparticles with highly enhanced BTEX gas sensing performance using chemiresistive sensor[J]. Chemosphere, 2021, 277: 130237.
https://dx.doi.org/10.1016/j.chemosphere.2021.130237
[18] Lafta S H, Taha A A, Farhan M M, et al. Biocompatibility study of α-Fe2O3nanoparticles prepared by hydrothermal method[J]. Surface Review and Letters, 2019. 26(9): 1950058.
https://dx.doi.org/10.1142/S0218625X19500586
[19] Nayeem J, Bari M A A A, Mahiuddin M, et al. Rahman. Silica coating of iron oxide magnetic nanoparticles by reverse microemulsion method and their functionalization with cationic polymer P(NIPAm-co-AMPTMA)for antibacterial vancomycin immobilization[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 611: 125857.
https://dx.doi.org/10.1016/j.colsurfa.2020.125857
[20] Foroughi F, Hassanzadeh-Tabrizi S A, Bigham A. In situ microemulsion synthesis of hydroxyapatite-Mg- Fe2O4nanocomposite as a magnetic drug delivery system[ J]. Materials Science and Engineering: C, 2016, 68: 774-779.
https://dx.doi.org/10.1016/j.msec.2016.07.028
[21] Wang Z Y, Zong S F, Chen H, et al. Silica coated gold nanoaggregates prepared by reverse microemulsion method: Dual mode probes for multiplex immunoassay using SERS and fluorescence[J]. Talanta, 2011, 86: 170-177.
https://dx.doi.org/10.1016/j.talanta.2011.08.054
[22] Lin J H, Chen J S. Synthesis and electrochemical characterization of LiFePO4/C composites prepared by the microemulsion method[J]. Electrochimica Acta, 2012, 62: 461-467.
https://dx.doi.org/10.1016/j.electacta.2011.12.072
[23] Rathore R, Harinkhere D, Kaurav N. Synthesis and characterization of ZnO nanoparticles by thermal decomposition method[J]. AIP Conference Proceedings, 2019, 2100(1): 020198.
https://dx.doi.org/10.1063/1.5098752
[24] Mohammadi-Aghdam S. Sonochemical method for the preparation of magnetic nanoparticles employing green precursors and its composite with praseodymium(III)nanoparticles for photocatalytic degradation of rhodamine b[J]. Journal of Materials Science: Materials in Electronics, 2018, 29(7): 5702-5709.
https://dx.doi.org/10.1007/s10854-018-8540-3
[25] Takahashi M, Yoshino T, Matsunaga T. Surface modification of magnetic nanoparticles using asparagines-serine polypeptide designed to control interactions with cell surfaces[J]. Biomaterials, 2010, 31(18): 4952-4957.
https://dx.doi.org/10.1016/j.biomaterials.2010.02.048
[26] Shahbazi S, Wang X, Yang J L, et al. Synthesis and surface modification of magnetic nanoparticles for potential applications in sarcomas[J]. Journal of Nanoparticle Research, 2015, 17(6): 1-19.
https://dx.doi.org/10.1007/s11051-015-3065-7
[27] Markides H, Rotherham M, Haj A J E. Biocompatibility and toxicity of magnetic nanoparticles in regenerative medicine[ J]. Journal of Nanomaterials, 2012, 2012: 614094.
https://dx.doi.org/10.1155/2012/614094
引用本文祁雄威, 耿佳宏, 司方方, 等. 磁性纳米粒子的合成及其生物医学应用研究进展[J]. 中国材料科学进展, 2022, 1(1): 11-17.
CitationQI Xiongwei, GENG Jiahong, SI Fangfang, et al. Synthesis and biomedical applications of magnetic nanoparticles[J]. Progress in Chinese Materials Sciences, 2022, 1(1): 11-17.