参考文献
[1] Lee H, Kim D I, Kwon S H, et al. Magnetically actuated drug delivery helical microrobot with magnetic nanoparticle retrieval ability[J]. ACS Applied Materials & Interfaces, 2021, 13(17): 19633-19647. https://dx.doi.org/10.1021/acsami.1c01742 [2] Awadh A A, Gresley A L, Forster-Wilkins G, et al. Determination of metabolic activity in planktonic and biofilm cells of Mycoplasma fermentans and Mycoplasma pneumoniae by nuclear magnetic resonance[J]. Scientific Reports, 2021, 11(1): 5650. https://dx.doi.org/10.1038/s41598-021-84326-2 [3] Khramtsov P, Barkina I, Kropaneva M, et al. Magnetic nanoclusters coated with albumin, casein, and gelatin: size tuning, relaxivity, stability, protein corona, and application in nuclear magnetic resonance immunoassay [J]. Nanomaterials, 2019, 9(9): 1345. https://dx.doi.org/10.3390/nano9091345 [4] Ahmed S, Dubey D, Chowdhury A, et al. Nuclear magnetic resonance-based metabolomics reveals similar metabolomics profiles in undifferentiated peripheral spondyloarthritis and reactive arthritis[J]. International Journal of Rheumatic Diseases, 2019, 22(4): 725-733. https://dx.doi.org/10.1111/1756-185X.13490 [5] Romaniuk J A H, Cegelski L. Peptidoglycan and teichoic acid levels and alterations in staphylococcus aureus by cell-wall and whole-cell nuclear magnetic resonance[J]. Biochemistry, 2018, 57(26): 3966-3975. https://dx.doi.org/10.1021/acs.biochem.8b00495 [6] Liu Y L, Chen D, Shang P, et al. A review of magnet systems for targeted drug delivery[J]. Journal of Controlled Release, 2019, 302: 90-104. https://dx.doi.org/10.1016/j.jconrel.2019.03.031 [7] Ma W F, Wu K Y, Tang J, et al. Magnetic drug carrier with a smart pH-responsive polymer network shell for controlled delivery of doxorubicin[J]. Journal of Materials Chemistry, 2012, 22(30): 15206-15214. https://dx.doi.org/10.1039/C2JM31721D [8] Unni M, Zhang J, George T J, et al. Engineering magnetic nanoparticles and their integration with microfluidics for cell isolation[J]. Journal of Colloid and Interface Science, 2020, 564: 204-215. https://dx.doi.org/10.1016/j.jcis.2019.12.092 [9] Gupta R, Sharma D.(Carboxymethyl-stevioside)-coated magnetic dots for enhanced magnetic hyperthermia and improved glioblastoma treatment[J]. Colloids and Surfaces B: Biointerfaces, 2021, 205: 111870. https://dx.doi.org/10.1016/j.colsurfb.2021.111870 [10] Ren M X, Wang Y Q, Lei B Y, et al. Magnetite nanoparticles anchored on graphene oxide loaded with doxorubicin hydrochloride for magnetic hyperthermia therapy[J]. Ceramics International, 2021, 47(14): 20686-20692. https://dx.doi.org/10.1016/j.ceramint.2021.04.080 [11] Lee M C, Seonwoo H, Jang K J, et al. Development of novel gene carrier using modified nano hydroxyapatite derived from equine bone for osteogenic differentiation of dental pulp stem cells[J]. Bioactive Materials, 2021, 6(9): 2742-2751. https://dx.doi.org/10.1016/j.bioactmat.2021.01.020 [12] Chang L, Yan H, Chang J, et al. Cationic polymer brush-coated bioglass nanoparticles for the design of bioresorbable RNA delivery vectors[J]. European Polymer Journal, 2021, 156: 110593. https://dx.doi.org/10.1016/j.eurpolymj.2021.110593 [13] Vigneswari T, Raji P, Thiruramanathan P. Magnetic targeting carrier applications of bismuth-doped nickel ferrites nanoparticles by co-precipitation method[J]. Transactions of the Indian Institute of Metals, 2021, 74(9): 2255-2265. https://dx.doi.org/10.1007/s12666-021-02312-8 [14] Rahman M A, Radhakrishnan R, Gopalakrishnan R. Structural, optical, magnetic and antibacterial properties of Nd doped NiO nanoparticles prepared by coprecipitation method[J]. Journal of Alloys and Compounds, 2018, 742: 421-429. https://dx.doi.org/10.1016/j.jallcom.2018.01.298 [15] 刘焕东, 莫尊理, 郭瑞斌, 等. 磁性纳米材料的控制合成 研究新进展[J]. 化工新型材料, 2016, 44(12): 1-3, 6. https://dx.doi.org/10.7502/j.issn.1674-3962.2016.04.07 [16] Irfan M, Dogan N, Bingolbali A, et al. Synthesis and characterization of NiFe2O4 magnetic nanoparticles with different coating materials for magnetic particle imaging(MPI)[J]. Journal of Magnetism and Magnetic Materials, 2021, 537: 168150. https://dx.doi.org/10.1016/j.jmmm.2021.168150 [17] Gounder T J, Pasha S K K. Hydrothermal synthesis of copper oxide-nanoparticles with highly enhanced BTEX gas sensing performance using chemiresistive sensor[J]. Chemosphere, 2021, 277: 130237. https://dx.doi.org/10.1016/j.chemosphere.2021.130237 [18] Lafta S H, Taha A A, Farhan M M, et al. Biocompatibility study of α-Fe2O3nanoparticles prepared by hydrothermal method[J]. Surface Review and Letters, 2019. 26(9): 1950058. https://dx.doi.org/10.1142/S0218625X19500586 [19] Nayeem J, Bari M A A A, Mahiuddin M, et al. Rahman. Silica coating of iron oxide magnetic nanoparticles by reverse microemulsion method and their functionalization with cationic polymer P(NIPAm-co-AMPTMA)for antibacterial vancomycin immobilization[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 611: 125857. https://dx.doi.org/10.1016/j.colsurfa.2020.125857 [20] Foroughi F, Hassanzadeh-Tabrizi S A, Bigham A. In situ microemulsion synthesis of hydroxyapatite-Mg- Fe2O4nanocomposite as a magnetic drug delivery system[ J]. Materials Science and Engineering: C, 2016, 68: 774-779. https://dx.doi.org/10.1016/j.msec.2016.07.028 [21] Wang Z Y, Zong S F, Chen H, et al. Silica coated gold nanoaggregates prepared by reverse microemulsion method: Dual mode probes for multiplex immunoassay using SERS and fluorescence[J]. Talanta, 2011, 86: 170-177. https://dx.doi.org/10.1016/j.talanta.2011.08.054 [22] Lin J H, Chen J S. Synthesis and electrochemical characterization of LiFePO4/C composites prepared by the microemulsion method[J]. Electrochimica Acta, 2012, 62: 461-467. https://dx.doi.org/10.1016/j.electacta.2011.12.072 [23] Rathore R, Harinkhere D, Kaurav N. Synthesis and characterization of ZnO nanoparticles by thermal decomposition method[J]. AIP Conference Proceedings, 2019, 2100(1): 020198. https://dx.doi.org/10.1063/1.5098752 [24] Mohammadi-Aghdam S. Sonochemical method for the preparation of magnetic nanoparticles employing green precursors and its composite with praseodymium(III)nanoparticles for photocatalytic degradation of rhodamine b[J]. Journal of Materials Science: Materials in Electronics, 2018, 29(7): 5702-5709. https://dx.doi.org/10.1007/s10854-018-8540-3 [25] Takahashi M, Yoshino T, Matsunaga T. Surface modification of magnetic nanoparticles using asparagines-serine polypeptide designed to control interactions with cell surfaces[J]. Biomaterials, 2010, 31(18): 4952-4957. https://dx.doi.org/10.1016/j.biomaterials.2010.02.048 [26] Shahbazi S, Wang X, Yang J L, et al. Synthesis and surface modification of magnetic nanoparticles for potential applications in sarcomas[J]. Journal of Nanoparticle Research, 2015, 17(6): 1-19. https://dx.doi.org/10.1007/s11051-015-3065-7 [27] Markides H, Rotherham M, Haj A J E. Biocompatibility and toxicity of magnetic nanoparticles in regenerative medicine[ J]. Journal of Nanomaterials, 2012, 2012: 614094. https://dx.doi.org/10.1155/2012/614094