医用NiTi合金与WE43镁合金双光束激光焊接接头组织及性能
Microstructure and Properties of Dual-beam Laser Welded Joints of Medical NiTi Alloy and WE43 Magnesium Alloy
摘要
目前的介入支架多采用同种金属材料制成, 难以实现局部区域的可控性降解需求, 其不可降解的锚定端易导致血管内膜损伤及远端新发破口 (dSINE) 等长期并发症。本文利用同轴连续脉冲双光束激光器将医用NiTi合金和WE43镁合金进行了焊接。对单束和双束激光焊接接头的焊缝形貌、显微组织、抗拉强度和断口进行了对比分析, 并研究了脉冲电流为接头的影响, 最后对表征了焊接后的耐蚀性。结果表示, 双束激光获得的接头外观和机械强度均优于单束激光。双束激光焊接NiTi/WE43搭接接头的最大抗拉强度到达到141. 6MPa。NiTi和WE43的连接受脉冲电流的影响, 主要是通过元素的扩散来实现的, 并且扩散层厚度随激光功率的增加先增大后减小。由于截面缺陷和Mg的溶解, 焊接后的接头处的耐蚀性较母材有所降低。NiTi保留了韧性断裂, 而WE43表现出热循环诱导的热影响区晶粒粗化的脆韧性混合断裂。
Abstract
Current mose interventional stents are made of the same metal material, which makes it difficult to achieve controllable degradation in local areas. Their non degradable anchoring end can easily lead to vascular intimal damage and long-term complications such as distal rupture (dSINE) . This study implemented coaxial dual-beam pulsed laser welding to join medical-grade NiTi alloy with WE43 magnesium alloy. A comparative analysis was conducted on weld morphology, microstructure, tensile strength, and fracture surfaces between single-beam and dual-beam laser-welded joints, with additional investigation into the effects of pulsed current parameters on interfacial characteristics. The corrosion resistance of welded joints was subsequently evaluated. Results demonstrated that dual-beam laser welding produced joints with superior surface integrity and mechanical performance compared to single-beam processing. The maximum tensile strength of dual-beam welded NiTi/WE43 lap joints reached 141. 6 MPa. The bonding mechanism between NiTi and WE43 was primarily governed by elemental interdiffusion influenced by pulsed current parameters, with diffusion layer thickness initially increasing and subsequently decreasing with elevated laser power. Corrosion resistance at the joint interface was reduced relative to base materials due to interfacial defects and preferential Mg dissolution. Fractographic analysis revealed preserved ductile fracture characteristics in NiTi, whereas WE43 exhibited a brittle-ductile mixed fracture mode attributed to thermally induced grain coarsening in the heat-affected zone.
作者
张春旭1 , 徐畅2 , 王红阳1 , 齐民1 , 庄熙晶2 , 董旭峰1,2,*
Author
ZHANG Chunxu1 , XU Chang2 , WANG Hongyang1 , QI Min1 , ZHUANG Xijing2 , DONG Xufeng1,2,*
所在单位
1. 大连理工大学材料科学与工程学院, 大连 116024 2. 大连理工大学附属中心医院 (大连市中心医院) , 大连 116033
Company
1. School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China 2. Central Hospital of Dalian University of Technology (Dalian Central Hospital) , Dalian 116033, China
基金项目
国家重点研发计划项目(批准号:2023YFB3810100)、大连市科技创新计划项目(批准号:2023JJ12SN031)、中央高校基本科研业务费专项资金项目(批准号:2023YGZD03和DUT24LK002)和大连市医药卫生科研业务费专项资金项目(批准号:2311003)资助。
参考文献
[1] Patel S K. A review on NiTi alloys for biomedical applications and their biocompatibility[J]. Mater Today: Proceedings, 2020: 5548-5551. https://doi.org/10.1016/j.matpr.2020.03.538. [2] Shamsolhodaei A. Controlling intermetallic compounds formation during laser welding of NiTi to 316L stainless steel[J]. Intermetallics, 2020: 106656. https://doi.org/10.1016/j.intermet.2019.106656. [3] Yuhua C. Investigation of welding crack in micro laser welded NiTiNb shape memory alloy and Ti6Al4V alloy dissimilar metals joints[J]. Opt Laser Technol, 2017: 197-202. https://doi.org/10.1016/j.optlastec.2016.12.028. [4] Zhang K. Effect of heat input modes on microstructure, mechanical properties and porosity of laser welded NiTi- 316L joints: A comparative study[J]. Mater Sci Eng A, 2022: 143426. https://doi.org/10.1016/j.msea.2022.143426. [5] Zhou X. Effects of niobium addition on the microstructure and mechanical properties of laser-welded joints of NiTiNb and Ti6Al4V alloys[J]. J Alloys Compd, 2018: 2616-2624. https://doi.org/10.1016/j.jallcom.2017.11.307. [6] Li X. Research progress on surface modification and coating technologies of biomedical NiTi alloys[J]. Colloids and Surfaces B: Biointerfaces, 2025: 114496. https://doi.org/10.1016/j.colsurfb.2025.114496. [7] Yoon W J. Computational Fluid Dynamics Analysis of a New Dissection Specific Stent Graft with the Aim to Prevent Distal Stent Graft Induced New Entry(dSINE)[J]. Eur J Vasc Endovasc, 2023: 146-147. https://doi.org/10.1016/j.ejvs.2023.04.004. [8] Li Q. Distal Stent Graft-Induced New Entry After TEVAR of Type B Aortic Dissection: Experience in 15 Years[J]. Ann Surg, 2019: 718-724. https://doi.org/10.1016/j.athoracsur.2018.09.043. [9] Canaud L. Risk factors for distal stent graft-induced new entry tear after endovascular repair of thoracic aortic dissection[J]. J Vasc Surg, 2019: 1610-1614. https://doi.org/10.1016/j.jvs.2018.07.086. [10] Burdess A. Early Experience With a Novel Dissection- Specific Stent-Graft to Prevent Distal Stent-Graft-Induced New Entry Tears After Thoracic Endovascular Repair of Chronic Type B Aortic Dissections[J]. Ann Surg, 2022: 36-47. https://doi.org/10.1016/j.avsg.2021.10.048. [11] Cai H. In vitro degradation behavior of Mg wire/poly(lactic acid)composite rods prepared by hot pressing and hot drawing[J]. Acta Bio, 2019: 125-141. https://doi.org/10.1016/j.actbio.2019.05.059. [12] Li X. A study on Mg wires/poly-lactic acid composite degradation under dynamic compression and bending load for implant applications[J]. J Mech Behav Biomed Mater, 2020: 103707. https://doi.org/10.1016/j.jmbbm.2020.103707. [13] Dong Q. Dual self-healing inorganic-organic hybrid coating on biomedical Mg[J]. Corros Sci, 2022: 110230. https://doi.org/10.1016/j.corsci.2022.110230. [14] Liu Y. Fundamental Theory of Biodegradable Metals- Definition, Criteria, and Design[J]. Adv Funct Mater, 2019: 1805402. https://doi.org/10.1002/adfm.201805402. [15] Xu C. Tungsten Inert Gas Welding-Brazing of AZ31B Magnesium Alloy to TC4 Titanium Alloy[J]. J Mater Sci Technol, 2016: 167-171. https://doi.org/10.1016/j.jmst.2015.12.003. [16] Aonuma M. Dissimilar metal joining of ZK60 magnesium alloy and titanium by friction stir welding[J]. Mater Sci Eng B, 2012: 543-548. https://doi.org/10.1016/j.mseb.2011.12.031. [17] Gao M. Dissimilar Ti/Mg alloy butt welding by fibre laser with Mg filler wire - preliminary study[J]. Sci Technol Weld Joining, 2013: 488-496. https://doi.org/10.1179/1362171811Y.0000000033 [18] Meco S. Application of laser in seam welding of dissimilar steel to aluminium joints for thick structural components[J]. Opt Lasers Eng, 2015: 22-30. https://doi.org/10.1016/j.optlaseng.2014.10.006. [19] Gipperich M. Pulsed Laser Influence on Temperature Distribution during Dual Beam Laser Metal Deposition[J]. Metals, 2020. https://doi.org/10.3390/met10060766. [20] Rasouli A. The effect of Nd: YAG laser pulse duration and post-weld heat treatment on the microstructure and mechanical properties of laser-welded NiTi shape memory alloy[J]. J Mater Res Technol, 2023: 6065-6074. https://doi.org/10.1016/j.jmrt.2023.02.220. [21] Chi J. Effect of double-pulse frequency and post-weld heat treatment on microstructure and mechanical properties of metal-inert gas welded Al-Mg-Si alloy joints[J]. Mater Sci Eng A, 2024: 147029. https://doi.org/10.1016/j.msea.2024.147029. [22] Panton B. Dissimilar Laser Joining of NiTi SMA and MP35N Wires[J]. Metall MaterTrans A, 2014: 3533-3544. https://doi.org/10.1007/s11661-014-2280-7. [23] Noor E E M. Wettability and strength of In-Bi-Sn leadfree solder alloy on copper substrate [J]. J Alloy Compd, 2010: 290-296. https://doi.org/10.1016/j.jallcom.2010.07.182. [24] Cui L-Y. Degradation mechanism of micro-arc oxidation coatings on biodegradable Mg-Ca alloys: The influence of porosity [J]. J Alloy Compd, 2017: 2464-2476. https://doi.org/10.1016/j.jallcom.2016.11.146. [25] Liu F. Study on microstructure and properties of resistance spot welding of Mg/Ti dissimilar materials[J]. Sci Technol Weld Joining, 2020: 581-588. https://doi.org/10.1080/13621718.2020.1780756. [26] li N. Evolution of bonding mechanism and fracture mechanism of Ti alloy-steel joint by dual-beam laser welding using Mg-RE(RE=Gd, Y)filler[J]. J Mater Res Technol, 2024: 1137-1148. https://doi.org/10.1016/j.jmrt.2023.12.083. [27] Yao R. Microstructure and shape memory effect of laser welded Nitinol wires[J]. Mater Lett, 2019: 1-5. https://doi.org/10.1016/j.matlet.2018.11.141. [28] Bhattacharyya J J. Deformation and fracture behavior of Mg alloy, WE43, after various aging heat treatments[J]. Mater Sci Eng A, 2017: 79-88. https://doi.org/10.1016/j.msea.2017.08.067. [29] Cedeño-Viveros L D. A novel method for the fabrication of tubular WE43 magnesium scaffold based on laser micro- spot welding[J]. Eng Sci Technol, 2022: 101096. https://doi.org/10.1016/j.jestch.2022.101096. [30] Lim T S. Electrochemical corrosion properties of CeO2- containing coatings on AZ31 magnesium alloys pre-pared by plasma electrolytic oxidation[J]. Corros Sci, 2012: 104-111. https://doi.org/10.1016/j.corsci.2012.04.043. [31] Gnedenkov A S. Control of the Mg alloy biodegradation via PEO and polymer-containing coatings[J]. Corros Sci, 2021: 109254. https://doi.org/10.1016/j.corsci.2021.109254. [32] Zhao Z. Dual strengthened corrosion control of biodegradable coating on magnesium alloy for vascular stent application[J]. Prog Org Coat, 2023: 107297. https://doi.org/10.1016/j.porgcoat.2022.107297. [33] Cai L. Corrosion resistance and mechanisms of Nd(NO3)3 and polyvinyl alcohol organic-inorganic hybrid material incorporated MAO coatings on AZ31 Mg alloy[J]. J Colloid Interf Sci, 2023: 833-845. https://doi.org/10.1016/j.jcis.2022.10.087. [34] Wu W. Biocorrosion resistance and biocompatibility of Mg-Al layered double hydroxide/poly-L-glutamic acid hybrid coating on magnesium alloy AZ31[J]. Prog Org Coat, 2020: 105746. https://doi.org/10.1016/j.porgcoat.2020.105746.
引用本文
张春旭, 徐畅, 王红阳, 等. 医用NiTi合金与WE43镁合金双光束激光焊接接头组织及性能[J]. 中国材料科学进展, 2025, 4(3): 54-65.
Citation
ZHANG Chunxu, XU Chang, WANG Hongyang, et al. Microstructure and properties of dualbeam laser welded joints of medical NiTi Alloy and WE43 Magnesium Alloy[J]. Progress in Chinese Materials Sciences, 2025, 4(3): 54-65.