2024年4月28日 星期日
热解微量Fe掺杂ZIF-8/PAN静电纺丝纤维制备1D多孔Fe-N-C基ORR电催化剂
Preparation of 1D Porous Fe-N-C based ORR Electrocatalysts by Pyrolysis of Trace Fe-doped ZIF-8/PAN Electrospun Fibres
摘要

开发简单、高效地批量制备多孔Fe-N-C催化剂的方法对于其大规模应用具有重要意义。静电纺丝法是一种可以很简单地通过增加针头数量来大规模生产碳基催化剂的常用方法, 而如何通过调控成分来控制静电纺丝纤维热解产物的孔结构和成分还存在很多困难。本文通过热解微量Fe掺杂ZIF-8颗粒与PAN的静电纺丝纤维制备了具有大量开放孔的高度石墨化的一维Fe-N-C催化剂。利用扫描电子显微镜、透射电子显微镜、X射线衍射、拉曼光谱、X射线光电子能谱和氮气吸附-脱附测试对材料进行了结构和成分分析。通过循环伏安法、线性扫描伏安法、旋转环盘电极测试表征了催化剂的电催化ORR性能。结果表明, 微量Fe掺杂实现了封闭孔向开放孔的转变, 将孔内活性位点暴露出来使其能够高效地参与反应。热解过程中Fe能够催化表面石墨结构的形成, 减小了电荷转移阻力, 间接提高了ORR反应速率。高活性Fe-N-C和石墨-N位点的引入, 孔结构的优化和石墨化程度的提高, 使5%Fe-NC获得了超越商业20%Pt/C的优异ORR催化性能。

Abstract

The development of a simple and efficient method for batch preparation of porous Fe-N-C catalysts is of great significance for it large-scale application. Electrostatic spinning is a common method that can be used to produce carbon-based catalysts on a large scale simply by increasing the number of needles. However, it is still difficult to control the pore structure and composition of the pyrolysis products of electrostatically spun fibers by modulating the composition. In this paper, highly graphitized one-dimensional Fe-N-C catalysts with a large number of open pores were prepared by pyrolysis of electrospun fibres of trace Fe-doped ZIF-8 particles with PAN. The materials were structurally and compositionally analyzed using scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy and nitrogen adsorption-desorption test. The electrocatalytic ORR performance of the catalysts was characterized by cyclic voltammetry, linear scanning voltammetry, and rotating ring-disk electrode tests. The results show that trace Fe doping achieves a transition from closed to open pores, exposing the active sites within the pores to allow them to participate efficiently in the reaction. Fe could catalyze the formation of surface graphite structures during pyrolysis, which reduces the charge transfer resistance and indirectly increases the ORR reaction rate. The formation of highly reactive Fe-N-C and graphite-N sites, the optimization of pore structure and the enhancement of graphitization allow 5% Fe-NC to achieve excellent ORR catalytic performance beyond that of commercial 20% Pt/C.  

DOI10.48014/pcms.20230710001
文章类型研究性论文
收稿日期2023-07-10
接收日期2023-08-01
出版日期2023-12-28
关键词静电纺丝, 多孔, Fe-N-C, 金属有机框架, 氧还原反应
KeywordsElectrospinning, porous, Fe-N-C, metal-organic frames, oxygen reduction reaction
作者冉帅1, 齐骥2,*, 董旭峰1, 黄昊1,*, 齐民1
AuthorRAN Shuai1, QI Ji2,*, DONG Xufeng1, HUANG Hao1,*, QI Min1
所在单位1. 大连理工大学材料科学与工程学院, 大连 116024;
2. 大连理工大学化工学院, 大连 116024 。
Company1. School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China
2. School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.
浏览量107
下载量52
基金项目国家自然科学基金项目(21703028)资助。
参考文献[1] 姜大乾. 车用燃料电池技术分析[J]. 科技资讯, 2023, 21(09): 52-55.
https://doi.org/10.16661/j.cnki.1672-3791.2209-5042-9891
[2] Chen Y H, Xu J J, He P, et al. Metal-air batteries: progress and perspective[J]. Science Bulletin, 2022, 67(23): 2449-2486.
[3] 邱晨曦. 甲醇燃料电池汽车的发展研究[J]. 机电技术, 2022(03): 60-62+120.
https://doi.org/10.19508/j.cnki.1672-4801.2022.03.017
[4] Yang Y, Peltier C R, Zeng R, et al. Electrocatalysis in alkaline media and alkaline membrane-based energy technologies[J]. Chemical Reviews, 2022, 122(6): 6117-6321.
https://doi.org/10.1021/acs.chemrev.1c00331
[5] Tian X L, Zhao X, Su Y Q, et al. Engineering bunched pt-ni alloy nanocages for efficient oxygen reduction in practical fuel cells[J]. Science, 2019, 366(6467): 850-856.
https://doi.org/10.1126/science.aaw7493
[6] Yang C L, Wang L N, Yin P, et al. Sulfur-anchoring synthesis of platinum intermetallic nanoparticle catalysts for fuel cells[J]. Science, 2021, 374(6566): 459-464.
https://doi.org/10.1126/science.abj9980
[7] Xu H D, Yang J, Ge R Y, et al. Carbon-based bifunctional electrocatalysts for oxygen reduction and oxygen evolution reactions: Optimization strategies and mechanistic analysis[J]. Journal of Energy Chemistry, 2022, 71: 234-265.
https://doi.org/10.1016/j.jechem.2022.03.022
[8] Thompson S T, Papageorgopoulos D. Platinum group metal-free catalysts boost cost competitiveness of fuel cell vehicles[J]. Nature Catalysis, 2019, 2(7): 558-561.
https://doi.org/10.1038/s41929-019-0291-x
[9] Li J, Chen S, Yang N, et al. Ultrahigh-loading zinc singleatom catalyst for highly efficient oxygen reduction in both acidic and alkaline media[J]. Angewandte Chemie- International Edition, 2019, 58(21): 7035-7039.
https://doi.org/10.1002/anie.201902109
[10] Zhang S, Xue H, Li W L, et al. Constructing precise coordination of nickel active sites on hierarchical porous carbon framework for superior oxygen reduction[J]. Small, 2021, 17(35): 2102125.
https://doi.org/10.1002/smll.202102125
[11] Zhou Y, Chen G, Wang Q, et al. Fe-N-C electrocatalysts with densely accessible Fe-N-4 sites for efficient oxygen reduction reaction[J]. Advanced Functional Materials, 2021, 31(34): 2102420.
https://doi.org/10.1002/adfm.202102420
[12] Xie Q, Si W, Wang Z, et al. Controlling sp3 defect density of carbon-based catalysts by defining a limiting space[J]. Chemical Engineering Journal, 2023, 452: 139221.
https://doi.org/10.1016/j.cej.2022.139221
[13] Gong K, Du F, Xia Z, et al. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction[J]. Science, 2009, 323(5915): 760-764.
https://doi.org/10.1126/science.1168049
[14] Quilez-Bermejo J, Melle-Franco M, San-Fabian E, et al. Towards understanding the active sites for the ORR in N-doped carbon materials through fine-tuning of nitrogen functionalities: An experimental and computational approach[J]. Journal of Materials Chemistry A, 2019, 7(42): 24239-24250.
https://doi.org/10.1039/c9ta07932g
[15] Xu Z, Zhou Z, Li B, et al. Identification of efficient active sites in nitrogen-doped carbon nanotubes for oxygen reduction reaction[J]. Journal of Physical Chemistry C, 2020, 124(16): 8689-8696.
https://doi.org/10.1021/acs.jpcc.9b11090
[16] Haque E, Zavabeti A, Uddin N, et al. Deciphering the role of quaternary n in O-2 reduction over controlled ndoped carbon catalysts[J]. Chemistry of Materials, 2020, 32(4): 1384-1392.
https://doi.org/10.1021/acs.chemmater.9b03354
[17] Zou J, Chen C, Chen Y, et al. Facile steam-etching approach to increase the active site density of an ordered porous Fe-N-C catalyst to boost oxygen reduction reaction[J]. ACS Catalysis, 2022: 4517-4525.
https://doi.org/10.1021/acscatal.2c00408
[18] Zhu Z, Yin H, Wang Y, et al. Coexisting single-atomic fe and ni sites on hierarchically ordered porous carbon as a highly efficient orr electrocatalyst[J]. Advanced Materials, 2020, 32(42): 2004670.
https://doi.org/10.1002/adma.202004670
[19] He Y, Guo H, Hwang S, et al. Single cobalt sites dispersed in hierarchically porous nanofiber networks for durable and high-powerPGM-free cathodes in fuel cells[J]. Advanced Materials, 2020, 32(46): 2003577.
https://doi.org/10.1002/adma.202003577
[20] Liang H W, Zhuang X D, Bruller S, et al. Hierarchically porous carbons with optimized nitrogen doping as highly active electrocatalysts for oxygen reduction[J]. Nature Communications, 2014, 5: 4973.
https://doi.org/10.1038/ncomms5973
[21] Wang G, Sun Y, Li D, et al. Controlled synthesis of Ndoped carbon nanospheres with tailored mesopores through self-assembly of colloidal silica[J]. Angewandte Chemie-International Edition, 2015, 54(50): 15191-15196.
https://doi.org/10.1002/anie.201507735
[22] Liu B, Liu F, Lu D, et al. Metal-organic framework assembly derived hierarchically ordered porous carbon for oxygen reduction in both alkaline and acidic media[J]. Chemical Engineering Journal, 2022, 430: 132762.
https://doi.org/10.1016/j.cej.2021.132762
[23] Qiao M F, Wang Y, Wang Q, et al. Hierarchically ordered porous carbon with atomically dispersed FeN4 for ultraefficient oxygen reduction reaction in protonexchange membrane fuel cells[J]. Angewandte Chemie- International Edition, 2020, 59(7): 2688-2694.
https://doi.org/10.1002/anie.201914123
[24] Li W, Liu B, Liu D, et al. Alloying Co species into ordered and interconnected macroporous carbon polyhedra for efficient oxygen reduction reaction in rechargeable zinc-air batteries[J]. Advanced Materials, 2022, 34(17): 2109605.
https://doi.org/10.1002/adma.202109605
[25] Lai Q, Zhao Y, Liang Y, et al. In situ confinement pyrolysis transformation of ZIF-8 to nitrogen-enriched meso-microporous carbon frameworks for oxygen reduction[J]. Advanced Functional Materials, 2016, 26(45): 8334-8344.
https://doi.org/10.1002/adfm.201603607
[26] Zhang C-L, Lu B-R, Cao F-H, et al. Electrospun metalorganic framework nanoparticle fibers and their derived electrocatalysts for oxygen reduction reaction[J]. Nano Energy, 2019, 55: 226-233.
https://doi.org/10.1016/j.nanoen.2018.10.029
[27] Wang C H, Kaneti Y V, Bando Y, et al. Metal-organic framework-derived one-dimensional porous or hollow carbon-based nanofibers for energy storage and conversion[J]. Materials Horizons, 2018, 5(3): 394-407.
https://doi.org/10.1039/c8mh00133b
引用本文冉帅, 齐骥, 董旭峰, 等. 热解微量Fe掺杂ZIF-8/PAN静电纺丝纤维制备1D多孔Fe-N-C基ORR电催化剂[J]. 中国材料科学进展, 2023, 2(4): 65-74.
CitationRAN Shuai, QI Ji, DONG Xufeng, et al. Preparation of 1D porous Fe-N-C based ORR electrocatalysts by pyrolysis of trace Fe-doped ZIF-8/PAN electrospun fibres[J]. Progress in Chinese Materials Science, 2023, 2(4): 65-74.