参考文献
[1] Lu X F, Xia B Y, Zang S Q, et al. Metal-organic frameworks based electrocatalysts for the oxygen reduction reaction[J]. Angewandte Chemie International Edition, 2020, 59(12): 4634-4650. https://doi.org/10.1002/anie.201910309 [2] Yang L, Zeng X, Wang W, et al. Recent progress in MOF-derived, Heteroatom-doped porous carbons as highly efficient electrocatalysts for oxygen reduction reaction in fuel cells[J]. Advanced Functional Materials, 2018, 28(7): 1704537. https://doi.org/10.1002/adfm.201704537 [3] Du L, Xing L, Zhang G, et al. Metal-organic framework derived carbon materials for electrocatalytic oxygen reactions: Recent progress and future perspectives[J]. Carbon( New York), 2020, 156: 77-92. https://doi.org/10.1016/j.carbon.2019.09.029 [4] Xuan C, Hou B, Xia W, et al. From a ZIF-8 polyhedron to three-dimensional nitrogen doped hierarchical porous carbon: an efficient electrocatalyst for the oxygen reduction reaction[J]. Journal of Materials Chemistry, A: Materials for Energy and Sustainability, 2018, 6(23): 10731- 10739. https://doi.org/10.1039/C8TA02385A [5] Ren Q, Wang H, Lu X, et al. Recent progress on MOFderived Heteroatom-doped carbon-based electrocatalysts for oxygen reduction reaction[J]. Advanced Science, 2018, 5(3): 1700515. https://doi.org/10.1002/advs.201700515 [6] Lai Q, Zhao Y, Liang Y, et al. In situ confinement pyrolysis transformation of ZIF-8 to nitrogen-enriched mesomicroporous carbon frameworks for oxygen reduction [J]. Advanced Functional Materials, 2016, 26(45): 8334-8344. https://doi.org/10.1002/adfm.201603607 [7] Zhang W, Arramel A, Wong P K J, et al. Core-shell hybrid zeolitic imidazolate framework-derived hierarchical carbon for capacitive deionization[J]. J Mater Chem A, 2020, 8: 14653-14660. https://doi.org/10.1039/D0TA05709F [8] Wang Y, Zhou J, He Y, et al. Highly performed nitrogendoped porous carbon electrocatalyst for oxygen reduction reaction prepared by a simple and slight regulation in hydrolyzing process of ZIF-8[J]. Journal of Solid State Chemistry, 2021, 302: 122415. https://doi.org/10.1016/j.jssc.2021.122415 [9] Qiao M, Wang Y, Wang Q, et al. Hierarchically ordered porous carbon with atomically dispersed FeN4 for ultraefficient oxygen reduction reaction in proton-exchange membrane fuel cells[J]. Angewandte Chemie International Edition, 2020, 59(7): 2688-2694. https://doi.org/10.1002/anie.201914123 [10] Lei, Cao X, Zhou Z, et al. Nitrogen and fluorine hybridization state tuning in hierarchical honeycomblike carbon nanofibers for optimized electrocatalytic ORR in alkaline and acidic electrolytes[C]// 中国化学会2019能源材料和缺陷化学研讨会, 2019. https://doi.org/10.1016/j.jpowsour.2018.12.076 [11] Martinez U, Komini Babu S, Holby E F, et al. Progress in the development of Fe-based PGM-free electrocatalysts for the oxygen reduction reaction[J]. Advanced Materials, 2019, 31(31): 1806545. https://doi.org/10.1002/adma.201806545 [12] Wu M, Wang K, Yi M, et al. A facile activation strategy for an MOF-derived metal-free oxygen reduction reaction catalyst: direct access to optimized pore structure and nitrogen species[J]. ACS Catalysis, 2017, 7(9): 6082-6088. https://doi.org/10.1021/acscatal.7b01649 [13] Wang M, Su K, Zhang M, et al. Advanced trifunctional electrocatalysis with Cu-, N-, S-doped defect-rich porous carbon for rechargeable Zn-air batteries and selfdriven water splitting[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(39): 13324-13336. https://doi.org/10.1021/acssuschemeng.1c04745 [14] Yang L, Shui J, Du L, et al. Carbon-based metal-free ORR electrocatalysts for fuel cells: past, present, and future[J]. Advanced Materials, 2019, 31(13): 1804799. https://doi.org/10.1002/adma.201804799 [15] Li Y, Han J, Xu Z, et al. N-, P-, and O-tridoped carbon hollow nanospheres with openings in the shell surfaces: a highly efficient electrocatalyst toward the ORR[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2021, 37(5): 2001-2010. https://doi.org/10.1021/acs.langmuir.0c03620 [16] Wang M, Yang W, Li X, et al. Atomically dispersed Feheteroatom( N, S)bridge sites anchored on carbon nanosheets for promoting oxygen reduction reaction[J]. ACS Energy Letters, 2021, 6(2): 379-386. https://doi.org/10.1021/acsenergylett.0c02484 [17] Zheng X, Wu J, Cao X, et al. N-, P-, and S-doped graphene- like carbon catalysts derived from onium salts with enhanced oxygen chemisorption for Zn-air battery cathodes[J]. Applied Catalysis. B, Environmental, 2019, 241: 442-451. https://doi.org/10.1016/j.apcatb.2018.09.054 [18] Woo J, Sa Y J, Kim J H, et al. Impact of textural properties of mesoporous porphyrinic carbon electrocatalysts on oxygen reduction reaction activity[J]. Chem ElectroChem, 2018, 5(14): 1928-1936. https://doi.org/10.1002/celc.201800183 [19] Tan H, Tang J, Zhou X, et al. Preparation of 3D open ordered mesoporous carbon single-crystals and their structural evolution during ammonia activation[J]. Chemical Communications, 2018, 54(68): 9494-9497. https://doi.org/10.1039/C8CC05318A [20] 曹雪萍. ZIF-8复合材料基氮掺杂多孔碳的制备及其电化学性能研究[D]. 青岛: 青岛科技大学, 2016. https://doi.org/10.7666/d.D845849 [21] Wang S, Qin J, Meng T, et al. Metal-organic framework- induced construction of actiniae-like carbon nanotube assembly as advanced multifunctional electrocatalysts for overall water splitting and Zn-air batteries [J]. Nano Energy, 2017, 39: 626-638. https://doi.org/10.1016/j.nanoen.2017.07.043 [22] 黄林. 基于三聚氰胺复合树脂的燃料电池非铂阴极催化材料的制备、表征和性能研究[D]. 南京: 南京大学, 2020. https://doi.org/10.27235/d.cnki.gnjiu.2020.000075 [23] Avci C, Ariñez-Soriano J, Carne-Sanchez A, et al. Postsynthetic anisotropic wet-chemical etching of colloidal sodalite ZIF crystals[J]. Angewandte Chemie International Edition, 2015, 54(48): 14417-14421. https://doi.org/10.1002/anie.201507588 [24] Guo Y, Yuan P, Zhang J, et al. Carbon nanosheets containing discrete Co-Nx-By-C active sites for efficient oxygen electrocatalysis and rechargeable Zn-air batteries [J]. ACS Nano, 2018, 12(2): 1894-1901. https://doi.org/10.1021/acsnano.7b08721 [25] Li C, Zhao D, Long H, et al. Recent advances in carbonized non-noble metal-organic frameworks for electrochemical catalyst of oxygen reduction reaction[J]. Rare Metals, 2021, 40(10): 2657-2689. https://doi.org/10.1007/s12598-020-01694-w [26] Wang H F, Chen L, Pang H, et al. MOF-derived electrocatalysts for oxygen reduction, oxygen evolution and hydrogen evolution reactions[J]. Chem Soc Rev, 2020, 49(5): 1414-1448. https://doi.org/10.1039/C9CS00906J [27] Liu J, Zhu D, Guo C, et al. Design strategies toward advanced MOF-derived electrocatalysts for energy-conversion reactions[J]. Advanced Energy Materials, 2017, 7(23): 1700518. https://doi.org/10.1002/aenm.201700518 [28] Tong M, Sun F, Xie Y, et al. Operando cooperated catalytic mechanism of atomically dispersed Cu-N4 and Zn- N4 for promoting oxygen reduction reaction[J]. Angewandte Chemie International Edition, 2021, 60(25): 14005-14012. https://doi.org/10.1002/anie.202102053