2024年4月21日 星期日
NH3 热处理ZIF-8制备燃料电池氧还原催化剂的研究
Study on the Preparation of Oxygen Reduction Catalyst for Fuel Cell by NH3 Heat Treatment ZIF-8
摘要

燃料电池中的催化剂由于制备成本高、工艺复杂等因素严重阻碍了燃料电池的发展, 本文利用NH3热处理ZIF-8制备了一种分级多孔的N掺杂碳材料, 并对其微观结构及电化学行为进行表征分析。结果发现, 化学刻蚀工艺可以在ZIF-8中引入中孔 (2~50nm) 或大孔 (>50nm) , 形成分级多孔结构, 通过控制刻蚀液的pH可以有效调节ZIF-8的孔径。而NH3热处理可以有效调节碳材料中的孔道结构, 增加材料中微孔 (<2nm) 与中孔的数量, 增大材料的比表面积。并且NH3可以作为N源在材料中掺入一定数量的N, 同时可以调节碳材料中的吡啶N与吡咯N向更稳定的石墨N转化, 通过控制NH3热处理的温度可以对碳材料的孔隙结构及N掺入含量进行合理控制。本文制备的N-C@2. 5pH-1000电催化性能优异, 具有和商用Pt/C催化剂相近的氧化还原反应 (oxygen reduction reaction, ORR) 活性和更加优良的循环稳定性。本文提出的合成策略为制备高效廉价的燃料电池催化剂提供了新的思路。

Abstract

The development of catalyst in fuel cell is seriously hampered due to high preparation costs and complex processes. In this paper, a graded porous N-doped carbon material was prepared using NH3 heat treatment ZIF-8, and its microstructure and electrochemical behavior. were characterized and analyzed. It is found that the chemical etching process can introduce mesoporous (2-50nm) or macropores (>50nm) into ZIF-8 to form. a graded porous structure, and the pore size of ZIF-8 can be effectively adjusted by controlling the pH of the etching solution. The NH3 heat treatment can effectively adjust the pore structure in carbon materials, increase the number of micropores (<2nm) and mesopores in the materials, and increase the specific surface area of the materials. NH3 can be used as an N source to dope the material with a certain amount of N. It can also regulate the conversion of pyridine N and pyrrole N in the carbon material to the more stable graphite N, and the pore structure and N doping content of the carbon material can be reasonably controlled by controlling the temperature of NH3 heat treatment. The N-C@2. 5pH-1000 prepared in this paper has excellent electrocatalytic performance, similar oxygen reduction reaction (ORR) activity and better cycling stability than commercial Pt/C catalysts. The synthetic strategy proposed in this paper provides a new idea for the preparation of efficient and inexpensive fuel cell catalysts.  

DOI10.48014/pcms.20230318001
文章类型研究性论文
收稿日期2023-03-18
接收日期2023-04-03
出版日期2023-06-28
关键词燃料电池, ZIF-8, NH3, 分级孔结构, N 掺杂碳材料
KeywordsFuel cell, ZIF-8, NH3, graded porous structure, N-doped carbon material
作者梁成明, 冉帅, 董旭峰*, 齐民*
AuthorLIANG Chengming, RAN Shuai, DONG Xufeng*, QI Min*
所在单位大连理工大学 材料科学与工程学院, 大连 116024
CompanySchool of Materials Science and Engineering, Dalian University of Technology, Dalian, China, 116024
浏览量343
下载量153
基金项目中央高校基本科研业务费(资助号DUT22YG201)资助。
参考文献[1] Lu X F, Xia B Y, Zang S Q, et al. Metal-organic frameworks based electrocatalysts for the oxygen reduction reaction[J]. Angewandte Chemie International Edition, 2020, 59(12): 4634-4650.
https://doi.org/10.1002/anie.201910309
[2] Yang L, Zeng X, Wang W, et al. Recent progress in MOF-derived, Heteroatom-doped porous carbons as highly efficient electrocatalysts for oxygen reduction reaction in fuel cells[J]. Advanced Functional Materials, 2018, 28(7): 1704537.
https://doi.org/10.1002/adfm.201704537
[3] Du L, Xing L, Zhang G, et al. Metal-organic framework derived carbon materials for electrocatalytic oxygen reactions: Recent progress and future perspectives[J]. Carbon( New York), 2020, 156: 77-92.
https://doi.org/10.1016/j.carbon.2019.09.029
[4] Xuan C, Hou B, Xia W, et al. From a ZIF-8 polyhedron to three-dimensional nitrogen doped hierarchical porous carbon: an efficient electrocatalyst for the oxygen reduction reaction[J]. Journal of Materials Chemistry, A: Materials for Energy and Sustainability, 2018, 6(23): 10731- 10739.
https://doi.org/10.1039/C8TA02385A
[5] Ren Q, Wang H, Lu X, et al. Recent progress on MOFderived Heteroatom-doped carbon-based electrocatalysts for oxygen reduction reaction[J]. Advanced Science, 2018, 5(3): 1700515.
https://doi.org/10.1002/advs.201700515
[6] Lai Q, Zhao Y, Liang Y, et al. In situ confinement pyrolysis transformation of ZIF-8 to nitrogen-enriched mesomicroporous carbon frameworks for oxygen reduction [J]. Advanced Functional Materials, 2016, 26(45): 8334-8344.
https://doi.org/10.1002/adfm.201603607
[7] Zhang W, Arramel A, Wong P K J, et al. Core-shell hybrid zeolitic imidazolate framework-derived hierarchical carbon for capacitive deionization[J]. J Mater Chem A, 2020, 8: 14653-14660.
https://doi.org/10.1039/D0TA05709F
[8] Wang Y, Zhou J, He Y, et al. Highly performed nitrogendoped porous carbon electrocatalyst for oxygen reduction reaction prepared by a simple and slight regulation in hydrolyzing process of ZIF-8[J]. Journal of Solid State Chemistry, 2021, 302: 122415.
https://doi.org/10.1016/j.jssc.2021.122415
[9] Qiao M, Wang Y, Wang Q, et al. Hierarchically ordered porous carbon with atomically dispersed FeN4 for ultraefficient oxygen reduction reaction in proton-exchange membrane fuel cells[J]. Angewandte Chemie International Edition, 2020, 59(7): 2688-2694.
https://doi.org/10.1002/anie.201914123
[10] Lei, Cao X, Zhou Z, et al. Nitrogen and fluorine hybridization state tuning in hierarchical honeycomblike carbon nanofibers for optimized electrocatalytic ORR in alkaline and acidic electrolytes[C]// 中国化学会2019能源材料和缺陷化学研讨会, 2019.
https://doi.org/10.1016/j.jpowsour.2018.12.076
[11] Martinez U, Komini Babu S, Holby E F, et al. Progress in the development of Fe-based PGM-free electrocatalysts for the oxygen reduction reaction[J]. Advanced Materials, 2019, 31(31): 1806545.
https://doi.org/10.1002/adma.201806545
[12] Wu M, Wang K, Yi M, et al. A facile activation strategy for an MOF-derived metal-free oxygen reduction reaction catalyst: direct access to optimized pore structure and nitrogen species[J]. ACS Catalysis, 2017, 7(9): 6082-6088.
https://doi.org/10.1021/acscatal.7b01649
[13] Wang M, Su K, Zhang M, et al. Advanced trifunctional electrocatalysis with Cu-, N-, S-doped defect-rich porous carbon for rechargeable Zn-air batteries and selfdriven water splitting[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(39): 13324-13336.
https://doi.org/10.1021/acssuschemeng.1c04745
[14] Yang L, Shui J, Du L, et al. Carbon-based metal-free ORR electrocatalysts for fuel cells: past, present, and future[J]. Advanced Materials, 2019, 31(13): 1804799.
https://doi.org/10.1002/adma.201804799
[15] Li Y, Han J, Xu Z, et al. N-, P-, and O-tridoped carbon hollow nanospheres with openings in the shell surfaces: a highly efficient electrocatalyst toward the ORR[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2021, 37(5): 2001-2010.
https://doi.org/10.1021/acs.langmuir.0c03620
[16] Wang M, Yang W, Li X, et al. Atomically dispersed Feheteroatom( N, S)bridge sites anchored on carbon nanosheets for promoting oxygen reduction reaction[J]. ACS Energy Letters, 2021, 6(2): 379-386.
https://doi.org/10.1021/acsenergylett.0c02484
[17] Zheng X, Wu J, Cao X, et al. N-, P-, and S-doped graphene- like carbon catalysts derived from onium salts with enhanced oxygen chemisorption for Zn-air battery cathodes[J]. Applied Catalysis. B, Environmental, 2019, 241: 442-451.
https://doi.org/10.1016/j.apcatb.2018.09.054
[18] Woo J, Sa Y J, Kim J H, et al. Impact of textural properties of mesoporous porphyrinic carbon electrocatalysts on oxygen reduction reaction activity[J]. Chem ElectroChem, 2018, 5(14): 1928-1936.
https://doi.org/10.1002/celc.201800183
[19] Tan H, Tang J, Zhou X, et al. Preparation of 3D open ordered mesoporous carbon single-crystals and their structural evolution during ammonia activation[J]. Chemical Communications, 2018, 54(68): 9494-9497.
https://doi.org/10.1039/C8CC05318A
[20] 曹雪萍. ZIF-8复合材料基氮掺杂多孔碳的制备及其电化学性能研究[D]. 青岛: 青岛科技大学, 2016.
https://doi.org/10.7666/d.D845849
[21] Wang S, Qin J, Meng T, et al. Metal-organic framework- induced construction of actiniae-like carbon nanotube assembly as advanced multifunctional electrocatalysts for overall water splitting and Zn-air batteries [J]. Nano Energy, 2017, 39: 626-638.
https://doi.org/10.1016/j.nanoen.2017.07.043
[22] 黄林. 基于三聚氰胺复合树脂的燃料电池非铂阴极催化材料的制备、表征和性能研究[D]. 南京: 南京大学, 2020.
https://doi.org/10.27235/d.cnki.gnjiu.2020.000075
[23] Avci C, Ariñez-Soriano J, Carne-Sanchez A, et al. Postsynthetic anisotropic wet-chemical etching of colloidal sodalite ZIF crystals[J]. Angewandte Chemie International Edition, 2015, 54(48): 14417-14421.
https://doi.org/10.1002/anie.201507588
[24] Guo Y, Yuan P, Zhang J, et al. Carbon nanosheets containing discrete Co-Nx-By-C active sites for efficient oxygen electrocatalysis and rechargeable Zn-air batteries [J]. ACS Nano, 2018, 12(2): 1894-1901.
https://doi.org/10.1021/acsnano.7b08721
[25] Li C, Zhao D, Long H, et al. Recent advances in carbonized non-noble metal-organic frameworks for electrochemical catalyst of oxygen reduction reaction[J]. Rare Metals, 2021, 40(10): 2657-2689.
https://doi.org/10.1007/s12598-020-01694-w
[26] Wang H F, Chen L, Pang H, et al. MOF-derived electrocatalysts for oxygen reduction, oxygen evolution and hydrogen evolution reactions[J]. Chem Soc Rev, 2020, 49(5): 1414-1448.
https://doi.org/10.1039/C9CS00906J
[27] Liu J, Zhu D, Guo C, et al. Design strategies toward advanced MOF-derived electrocatalysts for energy-conversion reactions[J]. Advanced Energy Materials, 2017, 7(23): 1700518.
https://doi.org/10.1002/aenm.201700518
[28] Tong M, Sun F, Xie Y, et al. Operando cooperated catalytic mechanism of atomically dispersed Cu-N4 and Zn- N4 for promoting oxygen reduction reaction[J]. Angewandte Chemie International Edition, 2021, 60(25): 14005-14012.
https://doi.org/10.1002/anie.202102053
引用本文梁成明, 冉帅, 董旭峰, 等. NH3 热处理ZIF-8制备燃料电池氧还原催化剂的研究[J]. 中国材料科学进展, 2023, 2(2): 24-34.
CitationLIANG Chengming, RAN Shuai, DONG Xufeng, et al. Study on the preparation of oxygen reduction catalyst for fuel cell by NH3 heat treatment ZIF-8[J]. Progress in Chinese Materials Sciences, 2023, 2(2): 24-34.