2024年4月28日 星期日
艾里函数的完备约简系统
Complete Reduction Systems for Airy Functions
摘要

计算“闭形式”的不定积分, 即符号积分, 是计算机代数的基础研究内容。在对Risch算法进行部分实现后, 人们希望实现并行积分的高效算法, 其中最著名的算法之一是Risch-Norman算法。然而, 这种方法依赖于多项式次数的估计。Norman的基于完备化的方法提供了一种避免次数估计的替代方法。然而, 根据微分域和所选的项序, 这种算法可能会不终止或产生无限数量的约简规则的情况。本文中我们将Norman方法应用于在物理学中有重要应用的Airy函数所生成的微分域。通过确定适当的相序, 我们用有限个公式表达出了两个Airy函数的具有无穷多个约简规则的完全约简系统。

Abstract

The computation of indefinite integrals in some kinds of “closed form”, the so-called symbolic integration, is an important and basic research subarea of computer algebra. After implementing Risch’s algorithm partly, it was realized that efficient algorithms can be achieved in parallel integration. One of the most famous algorithms is the Risch-Norman algorithm. However, this approach relies on an analytic with heuristic degree bounds. Norman’s completion-based approach provides an alternative for finding the numerator of the integral avoiding heuristic degree bounds. However, depending on the differential field and on the selected ordering of terms, it may happen that the completion process does not terminate and yields an infinite number of reduction rules. We apply Norman’s approach to the differential fields generated by Airy functions, which play an important role in physics. By fixing adapted orderings and analyzing the process in the concrete case, we present two complete reduction systems for Airy functions by finitely many formulae to denoting infinitely many reduction rules.  

DOI10.48014/bcam.20230724002
文章类型研究性论文
收稿日期2023-07-24
接收日期2023-08-28
出版日期2023-12-28
关键词符号积分, Risch-Norman算法, 无限约简系统
KeywordsSymbolic integration, Risch-Norman algorithm, Infinite reduction systems
作者杜昊1,2,*, Clemens G.Raab3
AuthorHao Du1,2,*, Clemens G.Raab3
所在单位1. 北京邮电大学理学院, 北京 102206
2. 教育部数学与信息网络重点实验室, 北京 102206
3. 约翰·开普勒 (林茨) 大学代数教研室, 林茨 4040.
Company1. School of Science, Beijing University of Posts and Telecommunications (BUPT) , Beijing, 102206, China
2. Key Laboratory of Mathematics and Information Networks (BUPT) , Ministry of Education, Beijing 102206, China
3. Institute for Algebra, Johannes Kepler University Linz (JKU) , Linz 4040, Austria.
浏览量117
下载量28
基金项目This research was supported by the Austrian Science Fund(FWF):P 31952,by the National Natural Science Foundation of China(NSFC):12201065 and by the Basic Research Fund of Beijing University of Posts and Telecommunications( BUPT):500422372,500423226.
参考文献[1] Bostan A. ; Chen S. ; Chyzak F. ; Li Z. ; Xin G. Her-mite Reduction and Creative Telescoping for Hyper-exponential Functions. Proceedings of the International Symposium on Symbolic and Algebraic Com-putation, pages 77- 84, ACM Press, 2013.
https://doi.org/10.48550/arXiv.1301.5038
[2] Bostan A. ; Chyzak F. ; Lairez P; Salvy B. Generalized Hermite Reduction, Creative Telescoping, and Definite Integration of D-Finite Functions. Proceedings of the International Symposium on Sym-bolic and Algebraic Computation, pages 95-102, ACM Press, 2018.
https://doi.org/10.1145/3208976.3208992
[3] Bostan A. ; Lairez P; Salvy B. Creative telescop-ing for rational functions using the Griffiths-Dwork method. Proceedings of the International Symposium on Symbolic and Algebraic Computation, pages 93-100, ACM Press, 2013.
https://doi.org/10.1145/2465506.2465935
[4] Boettner S. T. Mixed Transcendental and Algebraic Extensions for the Risch-Norman Algorithm. PhD Thesis, Tulane Univ. , New Orleans, USA, 2010.
[5] Bronstein M. Symbolic Integration I-Transcendental Functions. 2nd ed. , Springer, 2005.
https://doi.org/10.1007/b138171
[6] Bronstein M. pmint-The Poor Man’s Integrator. Version 1. 1, 2005.
http://www-sop.inria.fr/cafe/Manuel.Bronstein/pmint/
[7] Chen S. ; Du H. ; Li Z. Additive Decompositions in Primitive Extensions. Proceedings of the International Symposium on Symbolic and Algebraic Computation, pages 135-142, ACM Press, 2018.
https://doi.org/10.1145/3208976.3208987
[8] Chen S. ; Kauers M. ; Koutschan C. Reduction-Based Creative Telescoping for Algebraic Functions. Proceedings of the International Symposium on Symbolic and Algebraic Computation, pages 175-182, ACM Press, 2016.
https://doi.org/10.1145/2930889.2930901
[9] Chen S. ; van Hoeij M. ; Kauers M. ; Koutschan C.
[17] Reduction-based creative telescoping for Fuchsian D-finite functions. Proceedings of the International Symposium on Symbolic and Algebraic Computation, pages 108- 127, ACM Press, 2018.
https://doi.org/10.1016/j.jsc.2017.07.005
[10] Davenport J. H. The Parallel Risch Algorithm(I). Proc. EUROCAM’82, pages 144-157, 1982.
https://dl.acm.org/doi/10.5555/646656.700248
[11] Olver F. W. J. ; Olde Daalhuis A. B. ; Lozier D. W. ; Schneider B. I. ; Boisvert R. F. ; Clark C. W. ; Miller B. R. ; Saunders B. V. ; Cohl H. S. ; McClain M. A.(eds. )NIST Digital Library of Mathematical Functions.
https://dlmf.nist.gov/,Release1.1.10of2023-6-15.
[12] Du H. ; Guo J. ; Li Z. ; Wong E. An Additive Decom-position in Logarithmic Towers and Beyond. Proceedings of the InternationalSymposium on Symbolic and Algebraic Computation, pages 146153,[21] ACM Press, 2020.
https://doi.org/10.1145/3373207.3404025
[13] Davenport J. H. ; Trager B. M. On the Parallel Risch Algorithm(II). ACM Trans. Mathematical Software 11, pages 356-362, 1985.
https://doi.org/10.1145/6187.6189
[14] Geddes K. O. ; Stefanus L. Y. . On the RischNorman Integration Method and Its Implementation in MAPLE. Proceedings of the International Symposium on Symbolic and Algebraic Computation, pages 212-217, ACM Press, 1989.
https://doi.org/10.1145/74540.74567
[15] Geddes K. O. ; Czapor S. R. ; Labahn G. Algorithms for Computer Algebra. Springer Science & Business Media, 1992.
[16] van der Hoeven J. Constructing reductions for creative telescoping-The general differen-tially finite case. Applicable Algebra in Engineering, Communication and Computing 32, pages 575-602, 2021.
https://doi.org/10.1007/s00200-020-00413-3
[17] Kovacic J. J. An Algorithm for Solving Second Order Linear Homogeneous Differential Equations. Journal of Symbolic Computation 2, pages 3-43, 1986.
https://doi.org/10.1016/S0747-7171(86)80010-4
[18] Norman A. C. A Critical-Pair/Completion based Integration Algorithm. Proceedings of the International Symposium on Symbolic and Algebraic Computation, pages 201-205, 1990.
https://doi.org/10.1145/96877.96926
[19] Norman A. C. ; Moore P. M. A. Implementing the new Risch Integration algorithm. Proc. 4th International Colloquium on Advanced Computing Methods in Theoretical Physics, pages 99-110, 1977.
[20] Raab C. G. Definite Integration in Differential Fields. PhD thesis, RISC-Linz, Jo-hannes Kepler University, Linz, Austria, 2012.
http://www.risc.jku.at/publications/download/risc_4583/PhD_CGR.pdf
[21] Ritt J. F. Integration in Finite Terms-Liouville’s Theory of Elementary Methods. Columbia University Press, New York, 1948.
https://doi.org/10.1007/978-3-030-98767-1_3
[22] Risch R. H. The problem of integration in finite terms. Transactions of the American Mathematical Society 139, pages 167-189, 1969.
[23] Risch R. H. The solution of integration in finite terms. Bulletin of the American Mathematical Soci-ety 76, pages 605-608, 1970.
[24] Raab C. G. ; Singer M. F.(eds. ). Integration in Finite Terms: Fundamental Sources. Texts & Monographs in Symbolic Computation, Springer, 2022.
[25] Schneider C. ; Blu mlein J.(eds. ). Computer alge-bra in quantum field theory: Integration, summa-tion and special functions. Texts & Monographs in Symbolic Computation, Springer, Vienna, 2013.
https://dl.acm.org/doi/10.5555/2541763
[26] Valleé O. ; Soares M. Airy Functions and Applications to Physics. 2nd ed. , Imperial College Press, 2010.
引用本文杜昊, Clemens Raab. 艾里函数的完备约简系统[J]. 中国应用数学通报, 2023, 1(1): 10-21.
CitationHao Du, Clemens Raab. Complete reduction systems for Airy functions[J]. Bulletin of Chinese Applied Mathematics, 2023, 1(1): 10-21.