Company
1. School of Science, Beijing University of Posts and Telecommunications (BUPT) , Beijing 102206, China 2. Key Laboratory of Mathematics and Information Networks (BUPT) , Ministry of Education, Beijing 102206, China 3. Institute for Algebra, Johannes Kepler University Linz (JKU) , Linz 4040, Austria
参考文献
[1] Bostan A.;Chen S.;Chyzak F.;Li Z.;Xin G.Hermite Reduction and Creative Telescoping for Hyperexponential Functions.Proceedings of the International Symposi- um on Symbolic and Algebraic Computation,pages 77- 84,ACM Press,2013. https://doi.org/10.48550/arXiv.1301.5038 [2] Bostan A.;Chyzak F.;Lairez P;Salvy B.Generalized Hermite Reduction,Creative Telescoping,and Definite Integration of D-Finite Functions.Proceedings of the International Symposium on Symbolic and Algebraic Computation,pages 95-102,ACM Press,2018. https://doi.org/10.1145/ 3208976.3208992 [3] Bostan A.;Lairez P;Salvy B.Creative telescoping for rational functions using the Griffiths-Dwork method.Proceedings of the International Symposium on Symbolic and Algebraic Computation,pages 93-100,ACM Press,2013. https://doi.org/10.1145/2465506.2465935 [4] Boettner S.T.Mixed Transcendental and Algebraic Extensions for the Risch-Norman Algorithm.PhD Thesis, Tulane Univ.,New Orleans,USA,2010. [5] Bronstein M.Symbolic Integration I-Transcendental Functions.2nd ed.,Springer,2005. https://doi.org/10.1007/b138171 [6] Bronstein M.pmint-The Poor Man’s Integrator.Version 1.1,2005. http://www-sop.inria.fr/cafe/Manuel.Bronstein/pmint/ [7] Chen S.;Du H.;Li Z.Additive Decompositions in Primitive Extensions.Proceedings of the International Symposium on Symbolic and Algebraic Computation,pages 135-142,ACM Press,2018. https://doi.org/10.1145/3208976.3208987 [8] Chen S.;Kauers M.;Koutschan C.Reduction-Based Creative Telescoping for Algebraic Functions.Proceedings of the International Symposium on Symbolic and Algebraic Computation, pages 175-182,ACM Press,2016. https://doi.org/10.1145/ 2930889.2930901 [9] Chen S.;van Hoeij M.;Kauers M.;Koutschan C.Reduction- based creative telescoping for Fuchsian D-finite functions.Journal of Symbolic Computation 85,Pages 108-127,2018. https://doi.org/10.1016/j.jsc.2017.07.005 [10] Davenport J.H.The Parallel Risch Algorithm(I). Proc.EUROCAM’82,pages 144- 157,1982. https://dl.acm.org/doi/10.5555/ 646656.700248 [11] Olver F.W.J.;Olde Daalhuis A.B.;Lozier D.W.; Schneider B.I.;Boisvert R.F.;Clark C.W.;Miller B. R.;Saunders B.V.;Cohl H.S.;McClain M.A.(eds.) NIST Digital Library of Mathematical Functions. https://dlmf.nist.gov/,Release 1.1.10 of 2023-6-15. [12] Du H.;Guo J.;Li Z.;Wong E.An Additive Decomposition in Logarithmic Towers and Beyond.Proceedings of the International Symposium on Symbolic and Algebraic Computation,pages 146-153,ACM Press,2020. https://doi.org/10.1145/ 3373207.3404025 [13] Davenport J.H.;Trager B.M.On the Parallel Risch Algorithm(II).ACM Trans.Mathematical Software 11,pages 356-362,1985. https://doi.org/10.1145/6187.6189 [14] Geddes K.O.;Stefanus L.Y..On the Risch-Norman Integration Method and Its Implementation in MAPLE. Proceedings of the International Symposium on Symbolic and Algebraic Computation,pages 212-217, ACM Press,1989. https://doi.org/10.1145/74540.74567 [15] Geddes K.O.;Czapor S.R.;Labahn G.Algorithms for Computer Algebra.Springer Science & Business Media,1992. [16] van der Hoeven J.Constructing reductions for creative telescoping-The general differentially finite case.Applicable Algebra in Engineering,Communication and Computing 32,pages 575-602,2021. https://doi.org/10.1007/s00200-020-00413-3 [17] Kovacic J.J.An Algorithm for Solving Second Order Linear Homogeneous Differential Equations.Journal of Symbolic Computation 2,pages 3-43,1986. https://doi.org/10.1016/ S0747-7171(86)80010-4 [18] Norman A.C.A Critical-Pair/Completion based Integration Algorithm.Proceedings of the International Symposium on Symbolic and Algebraic Computation, pages 201-205,1990. https://doi.org/10.1145/96877.96926 [19] Norman A.C.;Moore P.M.A.Implementing the new Risch Integration algorithm.Proc.4th International Colloquium on Advanced Computing Methods in Theoretical Physics,pages 99-110,1977. [20] Raab C.G.Definite Integration in Differential Fields. PhD thesis,RISC-Linz,Johannes Kepler University, Linz,Austria,2012. http://www.risc.jku.at/publications/download/risc_4583/PhD_CGR.pdf [21] Ritt J.F.Integration in Finite Terms-Liouville’s Theory of Elementary Methods.Columbia University Press, New York,1948. https://doi.org/ 10.1007/978-3-030-98767-1_3 [22] Risch R.H.The problem of integration in finite terms. Transactions of the American Mathematical Society 139,pages 167-189,1969. [23] Risch R.H.The solution of integration in finite terms. Bulletin of the American Mathematical Society 76,pages 605-608,1970. [24] Raab C.G.;Singer M.F.(eds.).Integration in Finite Terms:Fundamental Sources.Texts & Monographs in Symbolic Computation,Springer,2022. https://doi.org/10.1007/978-3-030-98767-1 [25] Schneider C.;Blümlein J.(eds.).Computer algebra in quantum field theory:Integration,summation and special functions.Texts & Monographs in Symbolic Computation, Springer,Vienna,2013. [26] Vallée O.;Soares M.Airy Functions and Applications to Physics.2nd ed.,Imperial College Press,2010.